2022, Number 3
<< Back Next >>
Acta Ortop Mex 2022; 36 (3)
Biomechanics of the bone-screw interface in transpedicular spinal instrumentation
Alpízar-Aguirre A, González-Carbonell R, Ortiz-Prado A, Jacobo-Armendáriz V
Language: Spanish
References: 38
Page: 172-178
PDF size: 194.83 Kb.
ABSTRACT
Implant loosening, catastrophic failure of the bone-screw interface, material migration, and loss of stability of the fixation component assembly constitute a serious complication in adult spinal surgery. The contribution of biomechanics is based on experimental measurement and simulation of transpedicular spinal fixations. The cortical insertion trajectory showed an increase in the resistance of the screw-bone interface with respect to the pedicle insertion trajectory, both for axial traction forces to the screw and for stress distribution in the vertebra. The double-threaded screws and standard pedicle screws had similar strength. Partially threaded screws with four-thread showed better resistance to fatigue in terms of a higher failure load and number of cycles to fail. Cement or hydroxyapatite augmented screws with also showed a better fatigue resistance in osteoporotic vertebrae. Rigid segment simulations confirmed the presence of higher stresses on the intervertebral discs causing damage to adjacent segments. The posterior body of the vertebra may be subjected to high stresses, in the bone-screw interface, being this bone region more susceptible to failure.
REFERENCES
Moldavsky M, Salloum K, Bucklen B, Khalil S, Mehta J. In vitro biomechanical study of pedicle screw pull-out strength based on different screw path preparation techniques. Indian J Orthop. 2016; 50(2): 177-82.
Alkaly RN, Bader DL. The effect of transpedicular screw design on its performance in vertebral bone under tensile loads: a parametric study. Clin Spine Surg. 2016; 29(10): 433-40.
Tsuang FY, Chen CH, Wu LC, Kuo YJ, Lin SC, Chiang CJ. Biomechanical arrangement of threaded and unthreaded portions providing holding power of transpedicular screw fixation. Clin Biomech (Bristol, Avon). 2016; 39: 71-6.
Sansur CA, Caffes NM, Ibrahimi DM, Pratt NL, Lewis EM, Murgatroyd AA, et al. Biomechanical fixation properties of cortical versus transpedicular screws in the osteoporotic lumbar spine: an in vitro human cadaveric model. J Neurosurg Spine. 2016; 25(4): 467-76.
González-Carbonell RA, Ortiz-Prado A, Jacobo-Armendáriz VH, Cisneros-Hidalgo YA, Alpízar-Aguirre A. 3D patient-specific model of the tibia from CT for orthopedic use. J Orthop. 2015; 12(1): 11-6.
Mohi Eldin MM, Ali AMA. Lumbar transpedicular implant failure: a clinical and surgical challenge and its radiological assessment. Asian Spine J. 2014; 8(3): 281-97.
von Rüden C, Augat P. Failure of fracture fixation in osteoporotic bone. Injury. 2016; 47 Suppl 2: S3-10.
Chen CS, Chen WJ, Cheng CK, Jao SH, Chueh SC, Wang CC. Failure analysis of broken pedicle screws on spinal instrumentation. Med Eng Phys. 2005; 27(6): 487-96.
La Barbera L, Costa F, Villa T. ISO 12189 standard for the preclinical evaluation of posterior spinal stabilization devices--II: A parametric comparative study. Proc Inst Mech Eng H. 2016; 230(2): 134-44.
La Barbera L, Galbusera F, Villa T, Costa F, Wilke HJ. ASTM F1717 standard for the preclinical evaluation of posterior spinal fixators: can we improve it? Proc Inst Mech Eng H. 2014; 228(10): 1014-26.
Clement JL, Fiere V, Taylor J, Adam Y, Villaret B, inventors; Medicrea Technologies, assignee. Vertebral osteosynthesis equipment. USA patent 8308772 B2. 2012 26 Nov 2010.
de Coninck C, inventor; Stryker Spine, assignee. Multi-axial bone plate system. USA patent 8840649 B2. 2014 25 Jun 2013.
de Villiers M, Hovda D, inventors; Spinalmotion, Inc., assignee. Posterior spinal device and method. USA patent 8,734,519 B2. 2014.
Tornier A, Steib JP, Mazel C, inventors; Clariance, assignee. Posterior lumbar joint prosthesis. US patent 9295495 B2. 2016 24 Feb 2009.
Brasiliense LB, Lazaro BC, Reyes PM, Newcomb AG, Turner JL, Crandall DG, et al. Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines. Spine J. 2013; 13(8): 947-56.
Weiser L, Sellenschloh K, Püschel K, Morlock MM, Viezens L, Lehmann W, et al. Cortical threaded pedicle screw improves fatigue strength in decreased bone quality. Eur Spine J. 2021; 30(1): 128-35.
Oikonomidis S, Greven J, Bredow J, Eh M, Prescher A, Fischer H, et al. Biomechanical effects of posterior pedicle screw-based instrumentation using titanium versus carbon fiber reinforced PEEK in an osteoporotic spine human cadaver model. Clin Biomech (Bristol, Avon). 2020; 80: 105153.
Kanno H, Aizawa T, Hashimoto K, Itoi E. Enhancing percutaneous pedicle screw fixation with hydroxyapatite granules: A biomechanical study using an osteoporotic bone model. PLoS One. 2019; 14(9): e0223106.
Weiser L, Huber G, Sellenschloh K, Viezens L, Püschel K, Morlock MM, et al. Time to augment?! Impact of cement augmentation on pedicle screw fixation strength depending on bone mineral density. Eur Spine J. 2018; 27(8): 1964-71.
Varghese V, Krishnan V, Kumar GS. Comparison of pullout strength of pedicle screws following revision using larger diameter screws. Med Eng Phys. 2019; 74: 180-5.
Jalalian A, Gibson I, Tay EH. Computational Biomechanical Modeling of Scoliotic Spine: Challenges and Opportunities. Spine Deform. 2013; 1(6): 401-11.
Burkhart TA, Andrews DM, Dunning CE. Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. J Biomech. 2013; 46(9): 1477-88.
Zahaf S, Mansouri B, Belarbi A, Azari Z. The effects induced by a backpack eccentric load on the spine of children. Biomed Sci Eng. 2016; 4(1): 6-22.
Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A. Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng. 2015; 137(1): 0108021-01080215.
Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 2001; 34(5): 569-77.
Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Ann Rev Biomed Eng. 2001; 3(1): 307-33.
Wang Y, Owoc JS, Boyd SK, Videman T, Battié MC. Regional variations in trabecular architecture of the lumbar vertebra: Associations with age, disc degeneration and disc space narrowing. Bone. 2013; 56(2): 249-54.
Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 2002; 17(9): 1621-8.
Bianco RJ, Arnoux PJ, Wagnac E, Mac-Thiong JM, Aubin CE. Minimizing pedicle screw pullout risks: a detailed biomechanical analysis of screw design and placement. Clin Spine Surg. 2017; 30(3): E226-32.
Von Forell GA, Stephens TK, Samartzis D, Bowden AE. Low back pain: a biomechanical rationale based on "patterns" of disc degeneration. Spine (Phila Pa 1976). 2015; 40(15): 1165-72.
Helgason B, Gilchrist S, Ariza O, Vogt P, Enns-Bray W, Widmer RP, et al. The influence of the modulus–density relationship and the material mapping method on the simulated mechanical response of the proximal femur in side-ways fall loading configuration. Med Eng Phys. 2016; 38(7): 679-89.
Natarajan RN, Watanabe K, Hasegawa K. Biomechanical analysis of a long-segment fusion in a lumbar spine-a finite element model study. J Biomech Eng. 2018; 140(9). doi: 10.1115/1.4039989.
Suarez-Escobar M, Rendon-Velez E. A survey on static and quasi-static finite element models of the human cervical spine. Int J Interact Des Manuf. 2018; 12(2): 741-65.
Elmasry S, Asfour S, Travascio F. Implications of spine fixation on the adjacent lumbar levels for surgical treatment of thoracolumbar burst fractures: a finite element analysis. J Spine Care. 2016; 1(1): 1-5.
Rohlmann A, Nabil Boustani H, Bergmann G, Zander T. Effect of a pedicle-screw-based motion preservation system on lumbar spine biomechanics: a probabilistic finite element study with subsequent sensitivity analysis. J Biomech. 2010; 43(15): 2963-9.
Xu G, Fu X, Du C, Ma J, Li Z, Ma X. Biomechanical effects of vertebroplasty on thoracolumbar burst fracture with transpedicular fixation: a finite element model analysis. Orthop Traumatol Surg Res. 2014; 100(4): 379-83.
Matsukawa K, Yato Y, Hynes RA, Imabayashi H, Hosogane N, Yoshihara Y, et al. Comparison of pedicle screw fixation strength among different transpedicular trajectories: a finite element study. Clin Spine Surg. 2017; 30(7): 301-7.
Alpízar-Aguirre A, González-Carbonell RA, Ortiz-Prado A, Jacobo-Armendáriz VH, Ruiz-Cervantes O, Morales-Acosta L. Biomechanical behavior of bone tissue in spine instrumentation. Cir Cir. 2020; 88(1): 41-8.