2022, Number 3
<< Back Next >>
Odovtos-Int J Dent Sc 2022; 24 (3)
Stress Distribution in Occlusal Veneers with Different Finish Lines When Applying Vertical and Tangential Forces
Aliaga J, Caro MRS, Hermoza NM
Language: English
References: 34
Page: 103-114
PDF size: 270.89 Kb.
ABSTRACT
To evaluate stress distribution when applying vertical and tangential forces to 1mm thick occlusal veneers with different finish lines preparations, using the finite element method. One extracted third molar was prepared for occlusal veneers, firstly without any bevel. It was scanned in order to design two groups of lithium disilicate (G1A, G2A) and composite resin (G1B, G2B) occlusal veneers. Then, the third molar preparation was modified, beveling the finish line and it was subsequently scanned again to design the occlusal veneer groups with bevel (LD: G3A, G4A and CR: G3B, G4B). The four groups were subjected to different forces (400 N vertical and 900 N tangential). At 400 N, the non-beveled veneers showed slightly higher Von Mises stress values (G1A: 783 MPa and G1B 736.5 MPa) than the beveled veneers (G3A: 685.7 MPa and G3B: 675.8 MPa). However, when 900 N tangential forces were applied, the beveled occlusal veneers showed higher Von Mises stress values (G4A: 4297 MPa and G4B: 4133 MPa) than the non-beveled occlusal veneers (G2A: 2581.1 MPa and G2B: 3519.1 MPa). Furthermore, it was observed that the tissue under the occlusal veneers with bevel showed higher Von Mises stress values than the models without any bevel. Beveled and non-beveled occlusal veneers of lithium disilicate and composite resin presented similar stress distribution values when vertical forces of 400 N were applied; whereas with tangential forces of 900 N applied near to the finish line, the beveled groups presented notably higher stress values than the non-beveled groups. However, both finish line preparations presented adequate values for possible clinical performance.
REFERENCES
Tribst J.P.M., Dal Piva A.M.O., PenteadoM.M., Borges A.L.S., Bottino M.A. Influenceof ceramic material, thickness of restorationand cement layer on stress distribution ofocclusal veneers. Braz Oral Res. 2018; 32:1-10.
Azeem R.A., Sureshbabu N.M. Clinicalperformance of direct versus indirect compositerestorations in posterior teeth: A systematicreview. J Conserv Dent. 2018 Jan-Feb; 21(1): 2-9.
Sampaio F.B.W.R., Özcan M., Gimenez T.C.,Moreira M.S.N.A., Tedesco T.K., MorimotS. Effects of manufacturing methods on thesurvival rate of ceramic and indirect compositerestorations: A systematic review andmeta-analysis. J Esthet Restor Dent. 2019; 31(6): 561-71.
Al-Akhali M., Chaar M.S., Elsayed A.,Samran A., Kern M. Fracture resistance ofceramic and polymer-based occlusal veneerrestorations. J Mech Behav Biomed Mater.2017; 74: 245-50.
Al-Akhali M., Kern M., Elsayed A., SamranA., Chaar M.S. Influence of thermomechanicalfatigue on the fracture strength ofCAD-CAM-fabricated occlusal veneers. JProsthet Dent. 2019; 121 (4): 644-50.
Andrade J.P., Stona D., Bittencourt H.R.,Borges G.A., Burnett L.H. Júnior, SpohrA.M. Effect of Different Computer-aidedDesign/Computer-aided Manufacturing(CAD/CAM) Materials and Thicknesses onthe Fracture Resistance of Occlusal Veneers.Oper Dent. 2018; 43 (5): 539-48.
Ioannidis A., Mühlemann S., Özcan M.,Hüsler J., Hämmerle C.H.F., Benic G.I. Ultrathinocclusal veneers bonded to enamel andmade of ceramic or hybrid materials exhibitload-bearing capacities not different fromconventional restorations. J Mech BehavBiomed Mater. 2019; 90: 433-40.
Johnson A.C., Versluis A., Tantbirojn D., Ahuja S. Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers. J Prosthodont Res. 2014; 58 (2): 107-14.
Abu-Izze F.O., Ramos G.F., Borges A.L.S., Anami LC, Bottino MA. Fatigue behavior of ultrafine tabletop ceramic restorations. Dent Mater. 2018; 34 (9): 1401-09.
Guess P.C., Zavanelli R.A., Silva N.R., Bonfante E.A., Coelho P.G., Thompson V.P. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont. 2010; 23 (5): 434-42.
Tysowsky G.W. The science behind lithium disilicate: a metal-free alternative. Dent Today. 2009; 28 (3):112-3.
Angerame D., De Biasi M., Agostinetto M., Franzò A., Marchesi G. Influence of preparation designs on marginal adaptation and failure load of full-coverage occlusal veneers after thermomechanical aging simulation. J Esthet Restor Dent. 2019; 31 (3): 280-9.
Schlichting L.H., Maia H.P., Baratieri L.N., Magne P. Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. J Prosthet Dent. 2011; 105 (4): 217-26
Vianna A.L.S.V., Prado C.J.D., Bicalho A.A., Pereira R.A.D.S., Neves F.D.D., Soares C.J. Effect of cavity preparation design and ceramic type on the stress distribution, strain and fracture resistance of CAD/CAM onlays in molars. J Appl Oral Sci. 2018; 26: 1-10
Veneziani M. Posterior indirect adhesive restorations: updated indications and the Morphology Driven Preparation Technique. Int J Esthet Dent. 2017; 12 (2): 204-30.
Guess P.C., Schultheis S., Wolkewitz M., Zhang Y., Strub J.R. Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations. J Prosthet Dent. 2013; 110 (4): 264-73.
Resende T.H., Reis K.R., Schlichting L.H., Magne P. Ultrathin CAD-CAM Ceramic Occlusal Veneers and Anterior Bilaminar Veneers for the Treatment of Moderate Dental Biocorrosion: A 1.5-Year Follow-Up. Oper Dent. 2018; 43 (4): 337-46.
Ferraris F. Posterior indirect adhesive restorations (PIAR): preparation designs and adhesthetics clinical protocol. Int J Esthet Dent. 2017;12 (4): 482-502.
Magne P., Stanley K., Schlichting L.H. Modeling of ultrathin occlusal veneers. Dent Mater. 2012; 28 (7): 777-82.
Magne P., Schlichting L.H., Maia H.P., Baratieri L.N. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J Prosthet Dent. 2010; 104 (3): 149-57.
Huang X.Q., Hong N.R., Zou L.Y., Wu S.W., Li Y. Estimation of stress distribution and risk of failure for maxillary premolar restored by occlusal veneer with different CAD/CAM materials and preparation designs. Clin Oral Investig. 2020; 24 (9): 3157-67
Krummel A., Garling A., Sasse M., Kern M. Influence of bonding surface and bonding methods on the fracture resistance and survival rate of full-coverage occlusal veneers made from lithium disilicate ceramic after cyclic loading. Dent Mater. 2019; 35 (10): 1351-59.
Yazigi C., Kern M., Chaar MS. Influence of various bonding techniques on the fracture strength of thin CAD/CAM-fabricated occlusal glass-ceramic veneers. J Mech Behav Biomed Mater. 2017; 75: 504-11.
Federlin M., Krifka S., Herpich M., Hiller K.A., Schmalz G. Partial ceramic crowns: influence of ceramic thickness, preparation design and luting material on fracture resistance and marginal integrity in vitro. Oper Dent. 2007; 32 (3): 251-60.
Cortellini D., Canale A. Bonding lithium disilicate ceramic to feather-edge toothpreparations: a minimally invasive treatmentconcept. J Adhes Dent. 2012; 14 (1): 7-10.
Schmitz J.H., Beani M. Effect of differentcement types on monolithic lithium disilicatecomplete crowns with feather-edge preparationdesign in the posterior region. J ProsthetDent. 2016; 115 (6): 678-83.
Karagözoğlu İ., Toksavul S., Toman M. 3Dquantification of clinical marginal and internalgap of porcelain laminate veneers withminimal and without tooth preparation and2-year clinical evaluation. Quintessence Int.2016; 47 (6): 461-71.
Baldissara P., Monaco C., Onofri E.,Fonseca R.G., Ciocca L. Fatigue resistanceof monolithic lithium disilicate occlusalveneers: a pilot study. Odontology. 2019. 107(4): 482-90
Kirzioglu Z., Ceyhan D., Sengul F., AltunA.C. Three-dimensional finite element analysisof the composite and compomer onlays inprimary molars. Comput Methods BiomechBiomed Engin. 2019; 22 (10): 936-941.
Koc D., Dogan A., Bek B. Bite force andinfluential factors on bite force measurements:a literature review. Eur J Dent. 2010;4 (2): 223-32.
Padma S., Umesh S., Asokan S., Srinivas T.Bite force measurement based on fiber Bragggrating sensor. J Biomed Opt. 2017; 22 (10):1-6.
Jeong C.W., Kim K.H., Jang H.W., Kim H.S.,Huh J.K. The relationship between oral toriand bite force. Cranio. 2019; 37 (4): 246-53.
Waltimo A., Könönen M. A novel bite forcerecorder and maximal isometric bite forcevalues for healthy young adults. Scand J DentRes. 1993; 101 (3): 171-75.
Rosa R.S., Balbinot C.E., Blando E., et al.Evaluation of mechanical properties on threenanofilled composites. Stomatologija. 2012;14 (4): 126-30.