2022, Número 3
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2022; 24 (3)
Distribución de estrés en carillas con diferentes líneas de terminación aplicando fuerzas verticales y tangenciales
Aliaga J, Caro MRS, Hermoza NM
Idioma: Ingles.
Referencias bibliográficas: 34
Paginas: 103-114
Archivo PDF: 270.89 Kb.
RESUMEN
Evaluar la distribución de estrés al aplicar fuerzas verticales y tangenciales
en carillas oclusales de 1mm de espesor con diferentes líneas de terminación marginal
por el método de elementos finitos. Se preparó un tercer molar extraído para carilla
oclusal, primero sin bisel. Se escaneó para diseñar dos grupos de carillas oclusales
de disilicato de litio (G1A, G2A) y resina compuesta (G1B, G2B). Después, esta
preparación molar fue modificada, biselando la línea de terminación y escaneándola
nuevamente para diseñar los grupos de carillas oclusales con bisel (DL: G3A, G4A and
RC: G3B, G4B). Los 4 grupos fueron sometidos a fuerzas diferentes (400 N vertical y
900 N tangencial). Con 400 N, las carillas sin bisel presentaron ligera mayor tensión
de Von Mises (G1A: 783 MPa y G1B 736.5 MPa) que las carillas con bisel (G3A: 685.7
MPa y G3B: 675.8 MPa). De distinta forma, al aplicar fuerzas tangenciales de 900 N,
las carillas oclusales con bisel presentaron mayor tensión de Von Mises (G4A: 4297
MPa y G4B: 4133 MPa) que las carillas oclusales sin bisel (G2A: 2581.1 MPa y G2B:
3519.1 MPa). Además, se observó que los tejidos subyacentes a las carillas oclusales
con bisel, presentaron mayor tensión de Von Mises, frente a los modelos sin bisel. Las
carillas oclusales con y sin bisel de disilicato de litio y resina compuesta presentaron
una distribución de estrés similar con fuerzas verticales de 400 N, por otro lado, con
fuerzas tangenciales de 900 N, los grupos con bisel presentaron notablemente mayor
tensión que los grupos sin bisel. Sin embargo, ambos diseños de terminación marginal
presentaron valores adecuados para un posible desempeño clínico.
REFERENCIAS (EN ESTE ARTÍCULO)
Tribst J.P.M., Dal Piva A.M.O., PenteadoM.M., Borges A.L.S., Bottino M.A. Influenceof ceramic material, thickness of restorationand cement layer on stress distribution ofocclusal veneers. Braz Oral Res. 2018; 32:1-10.
Azeem R.A., Sureshbabu N.M. Clinicalperformance of direct versus indirect compositerestorations in posterior teeth: A systematicreview. J Conserv Dent. 2018 Jan-Feb; 21(1): 2-9.
Sampaio F.B.W.R., Özcan M., Gimenez T.C.,Moreira M.S.N.A., Tedesco T.K., MorimotS. Effects of manufacturing methods on thesurvival rate of ceramic and indirect compositerestorations: A systematic review andmeta-analysis. J Esthet Restor Dent. 2019; 31(6): 561-71.
Al-Akhali M., Chaar M.S., Elsayed A.,Samran A., Kern M. Fracture resistance ofceramic and polymer-based occlusal veneerrestorations. J Mech Behav Biomed Mater.2017; 74: 245-50.
Al-Akhali M., Kern M., Elsayed A., SamranA., Chaar M.S. Influence of thermomechanicalfatigue on the fracture strength ofCAD-CAM-fabricated occlusal veneers. JProsthet Dent. 2019; 121 (4): 644-50.
Andrade J.P., Stona D., Bittencourt H.R.,Borges G.A., Burnett L.H. Júnior, SpohrA.M. Effect of Different Computer-aidedDesign/Computer-aided Manufacturing(CAD/CAM) Materials and Thicknesses onthe Fracture Resistance of Occlusal Veneers.Oper Dent. 2018; 43 (5): 539-48.
Ioannidis A., Mühlemann S., Özcan M.,Hüsler J., Hämmerle C.H.F., Benic G.I. Ultrathinocclusal veneers bonded to enamel andmade of ceramic or hybrid materials exhibitload-bearing capacities not different fromconventional restorations. J Mech BehavBiomed Mater. 2019; 90: 433-40.
Johnson A.C., Versluis A., Tantbirojn D., Ahuja S. Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers. J Prosthodont Res. 2014; 58 (2): 107-14.
Abu-Izze F.O., Ramos G.F., Borges A.L.S., Anami LC, Bottino MA. Fatigue behavior of ultrafine tabletop ceramic restorations. Dent Mater. 2018; 34 (9): 1401-09.
Guess P.C., Zavanelli R.A., Silva N.R., Bonfante E.A., Coelho P.G., Thompson V.P. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont. 2010; 23 (5): 434-42.
Tysowsky G.W. The science behind lithium disilicate: a metal-free alternative. Dent Today. 2009; 28 (3):112-3.
Angerame D., De Biasi M., Agostinetto M., Franzò A., Marchesi G. Influence of preparation designs on marginal adaptation and failure load of full-coverage occlusal veneers after thermomechanical aging simulation. J Esthet Restor Dent. 2019; 31 (3): 280-9.
Schlichting L.H., Maia H.P., Baratieri L.N., Magne P. Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. J Prosthet Dent. 2011; 105 (4): 217-26
Vianna A.L.S.V., Prado C.J.D., Bicalho A.A., Pereira R.A.D.S., Neves F.D.D., Soares C.J. Effect of cavity preparation design and ceramic type on the stress distribution, strain and fracture resistance of CAD/CAM onlays in molars. J Appl Oral Sci. 2018; 26: 1-10
Veneziani M. Posterior indirect adhesive restorations: updated indications and the Morphology Driven Preparation Technique. Int J Esthet Dent. 2017; 12 (2): 204-30.
Guess P.C., Schultheis S., Wolkewitz M., Zhang Y., Strub J.R. Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations. J Prosthet Dent. 2013; 110 (4): 264-73.
Resende T.H., Reis K.R., Schlichting L.H., Magne P. Ultrathin CAD-CAM Ceramic Occlusal Veneers and Anterior Bilaminar Veneers for the Treatment of Moderate Dental Biocorrosion: A 1.5-Year Follow-Up. Oper Dent. 2018; 43 (4): 337-46.
Ferraris F. Posterior indirect adhesive restorations (PIAR): preparation designs and adhesthetics clinical protocol. Int J Esthet Dent. 2017;12 (4): 482-502.
Magne P., Stanley K., Schlichting L.H. Modeling of ultrathin occlusal veneers. Dent Mater. 2012; 28 (7): 777-82.
Magne P., Schlichting L.H., Maia H.P., Baratieri L.N. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J Prosthet Dent. 2010; 104 (3): 149-57.
Huang X.Q., Hong N.R., Zou L.Y., Wu S.W., Li Y. Estimation of stress distribution and risk of failure for maxillary premolar restored by occlusal veneer with different CAD/CAM materials and preparation designs. Clin Oral Investig. 2020; 24 (9): 3157-67
Krummel A., Garling A., Sasse M., Kern M. Influence of bonding surface and bonding methods on the fracture resistance and survival rate of full-coverage occlusal veneers made from lithium disilicate ceramic after cyclic loading. Dent Mater. 2019; 35 (10): 1351-59.
Yazigi C., Kern M., Chaar MS. Influence of various bonding techniques on the fracture strength of thin CAD/CAM-fabricated occlusal glass-ceramic veneers. J Mech Behav Biomed Mater. 2017; 75: 504-11.
Federlin M., Krifka S., Herpich M., Hiller K.A., Schmalz G. Partial ceramic crowns: influence of ceramic thickness, preparation design and luting material on fracture resistance and marginal integrity in vitro. Oper Dent. 2007; 32 (3): 251-60.
Cortellini D., Canale A. Bonding lithium disilicate ceramic to feather-edge toothpreparations: a minimally invasive treatmentconcept. J Adhes Dent. 2012; 14 (1): 7-10.
Schmitz J.H., Beani M. Effect of differentcement types on monolithic lithium disilicatecomplete crowns with feather-edge preparationdesign in the posterior region. J ProsthetDent. 2016; 115 (6): 678-83.
Karagözoğlu İ., Toksavul S., Toman M. 3Dquantification of clinical marginal and internalgap of porcelain laminate veneers withminimal and without tooth preparation and2-year clinical evaluation. Quintessence Int.2016; 47 (6): 461-71.
Baldissara P., Monaco C., Onofri E.,Fonseca R.G., Ciocca L. Fatigue resistanceof monolithic lithium disilicate occlusalveneers: a pilot study. Odontology. 2019. 107(4): 482-90
Kirzioglu Z., Ceyhan D., Sengul F., AltunA.C. Three-dimensional finite element analysisof the composite and compomer onlays inprimary molars. Comput Methods BiomechBiomed Engin. 2019; 22 (10): 936-941.
Koc D., Dogan A., Bek B. Bite force andinfluential factors on bite force measurements:a literature review. Eur J Dent. 2010;4 (2): 223-32.
Padma S., Umesh S., Asokan S., Srinivas T.Bite force measurement based on fiber Bragggrating sensor. J Biomed Opt. 2017; 22 (10):1-6.
Jeong C.W., Kim K.H., Jang H.W., Kim H.S.,Huh J.K. The relationship between oral toriand bite force. Cranio. 2019; 37 (4): 246-53.
Waltimo A., Könönen M. A novel bite forcerecorder and maximal isometric bite forcevalues for healthy young adults. Scand J DentRes. 1993; 101 (3): 171-75.
Rosa R.S., Balbinot C.E., Blando E., et al.Evaluation of mechanical properties on threenanofilled composites. Stomatologija. 2012;14 (4): 126-30.