2022, Number 3
<< Back Next >>
Odovtos-Int J Dent Sc 2022; 24 (3)
The Effect of Curing Modes and Times of Third-Generation Led LCU on the Mechanical Properties of Nanocomposites
Oglakci B, Enginler Örh, Demirkol M, Özduman ZC, Kucukyildirim BO, Eliguzeloglu DE
Language: English
References: 31
Page: 61-74
PDF size: 684.21 Kb.
ABSTRACT
This study evaluates the effect of curing modes and times on the mechanical properties of nanocomposites. Two nanocomposite resins were investigated: supra-nanohybrid (Estelite Posterior Quick; EP) and nanohybrid (Solare X; SX). They were polymerized with a light-emitting diode light-curing units (LED LCU, Valo) as follows: standard mode for 20s (ST20), high power mode for 12s (HP12), high power mode for 20s (HP20), extra power mode for 6s (XP6), and extra power mode for 20s (XP20). For Vickers microhardness (HV), disc-shaped specimens were fabricated (n=10). For the three-point bending test, bar-shaped specimens were fabricated (n=10). Flexural strength and resilience modulus were calculated. The fractured surfaces and specimen surfaces of composites were observed using scanning electron microscopy. The data were analyzed with repeated measures ANOVA, two-way variance, and Bonferroni tests (
p‹0.05). On the top and bottom surfaces of the EP nanocomposite resin, ST20 and HP12 revealed statistically higher HV than with XP6. Moreover, HP20 and XP20 had statistically higher HV than HP12 and XP6. For the SX nanocomposite
resin, HP20 had statistically higher HV than HP12. For EP and SX, there were no
significant differences in flexural strength and resilience modulus regarding the curing
modes and times. Furthermore, SX demonstrated lower mechanical properties than EP.
Scanning electron microscopy indicated that both nanocomposites had similar surface
appearances. However, with all curing modes and times, SX exhibited layered fractures
and more crack formations than EP. Different curing modes and times could influence
the microhardness of nanocomposites.
REFERENCES
Demarco F.F., Corręa M.B., Cenci M.S.,Moraes R.R., Opdam N.J. Longevity ofposterior composite restorations: not only amatter of materials. Dent Mater. 2012; 28 (1):87-101.
Subrahami K., Ahmed W. Emerging nanotechnologiesin dentistry-materials, processesand applications Waltham (MA): ElsevierInc. 2012.
Jandt K.D., Mills R.W. A brief history of LEDphotopolymerization. Dent Mater. 2013; 29(6) 605-617.
Jakubiak J., Allonas X., Fouassier J.,Sionkowska A., Andrzejewska E., LindenL. Camphorquinone-amines photoinitatingsystems for the initiation of free radical polymerization.Polymer 2003; 44 (8): 5219-5226.
Randolph L.D., Palin W.M., Bebelman S.,Devaux J., Gallez B., Leloup G. Ultra-fastlight-curing resin composite with increasedconversion and reduced monomer elution.Dent Mater 2014; 30 (5): 594-604.
Platt JA, Price RB. Light curing explored inHalifax. Oper Dent 2014; 39 (6):561-563.
Feng L., Suh BI. Exposure reciprocity lawin photopolymerization of multi-functionalacrylates and methacrylates. MacromolChem Phys 2007; 208 (3): 295-306.
Peutzfeldt A., Lussi A., Flury S. Effect ofHigh-Irradiance Light-Curing on MicromechanicalProperties of Resin Cements.Biomed Res Int. 2016; 4894653. doi:10.1155/2016/4894653
Ilie N, Kreppel I, Durner J. Effect of radicalamplified photopolymerization (RAP) inresin-based composites. Clin Oral Investig.2014; 18 (4): 1081-1088.
Shibasaki S., Takamizawa T., Nojiri K., ImaiA., Tsujimoto A., Endo H., et al. PolymerizationBehavior and Mechanical Properties ofHigh-Viscosity Bulk Fill and Low ShrinkageResin Composites. Oper Dent. 2017; 42 (6):E177-E187. doi: 10.2341/16-385-L
Gan J.K., Yap A.U., Cheong J.W., Arista N.,Tan C.B.K. Bulk-Fill Composites: Effectivenessof Cure With Poly- and MonowaveCuring Lights and Modes. Oper Dent. 2018;43 (2): 136-143. doi: 10.2341/16-304-L
Yap A.U.J., Seneviratne C. Influence of lightenergy density on effectiveness of compositecure. Oper Dent. 2001; 26 (5): 460-6.
Özduman Z.C., Kazak M., Fildişi M.A.,Özlen R.H., Dalkilic E., Donmez N.Effect of Polymerization Time and HomeBleaching Agent on the Microhardnessand Surface Roughness of Bulk-FillComposites: A Scanning Electron MicroscopyStudy, Scanning 2019.:2307305. doi:10.1155/2019/2307305
ISO-Standards 2009. ISO 4049 Dentistry-Polymer-Based Restorative MaterialsGeneve: International Organization forStandardization.
Askeland DR. The Science and Engineeringof Materials, Springer Science+BusinessMedia, New York. 1996 Online ISBN: 978-1-4899-2895-5 https://doi.org/10.1007/978-1-4899-2895-5
Yap A.U.J., Seneviratne C. Influence of lightenergy density on effectiveness of compositecure. Oper Dent. 2001; 26 (5): 460-6
Peutzfeldt A., Asmussen E. Resin CompositeProperties and Energy Density of Light Cure.J Dent Res. 2005; 84 (7): 659-62.
Price R.B.T., Felix C.A., Andreou P. Effectsof resin composite composition and irradiationdistance on the performance of curing lights.Biomaterials 2004; 25 (18): 4465-4477, 2004.
Rueggeberg F.A., Giannini M., ArraisC.A.G., Price R.B.T. Light curing in dentistryand clinical implications: a literature review.Braz Oral Res. 2017; 31 (Supplement 1) e61.
Borges B.C.D., Groninger A.I.S., Soares G.P.,Santos-Daroz C.B.D., Ambrosano G.M.B.,Marchi GM. Curing quality of composites asinfluenced by the filler content, light sourceand curing time. Dentistry 2012; 1 (1): 103.
Price R.B.T. Light curing in dentistry. DentClin N Am. 2017; 61 (4): 751-778.
Bouschlicher M.R., Rueggeberg F.A., WilsonB.M. Correlation of bottom-to-top surfacemicrohardness and conversion ratios for avariety of resin composite compositions.Oper Dent. 2004; 29 (6): 698-704.
Gonulol N., Ozer S., Tunc E.S. Effect of athird-generation LED LCU on microhardnessof tooth-colored restorative materials.Int J Pediatr Dent. 2016; 26(5): 376-82
Lima A.F., de Andrade K.M.G., da CruzAlves L.E., Sores G.P., Marchi G.M., AguiarF.H.B. Influence of light source and extendedtime of curing on microhardness and degreeof conversion of different regions of a nanofilledcomposite resin. Eur J Dent. 2012; 6 (2):153-157.
Kim K.H., Ong J.L., Okuno O. The effect offiller loading and morophology on the mechanicalproperties of contemporary composites.J Prosthet Dent. 2002; 87 (6): 642-94.
Heintze S.D., Zimmerli B. Relevance of invitro tests of adhesive and composite dentalmaterials, a review in 3 parts. Part 1: approvalrequirements and standardized testing ofcomposite materials according to ISO specifications.Schweiz Monatsschr Zahnmed 2011;121(9): 804-816
Goracci C., Cadenaro M., Fontanive L.,Giangrosso G., Juloski J., Vichi A. Polymerizationefficiency and flexural strength oflow-stress restorative composites. DentMater. 2014; 30 (6): 688-694.
Chung S.M., Yap A.U.J., Chandra S.P., LimCT. Flexural Strength of Dental CompositeRestoratives: Comparison of Biaxial andThree-Point Bending Test. J Biomed MaterRes. 2004; 71(2): 278-83.
Par M., Tarle Z., Hickel R., Ilie N. Mechanicalproperties of experimental composites containingbioactive glass after artificial aging inwater and ethanol. Clin Oral Investig. 2019;23(6): 2733-2741. doi: 10.1007/s00784-018-2713-6. Epub 2018 Oct 25.
Salazar D.C., Dennison J., Yaman P. Inorganicand prepolymerized filler analysis of fourresin composites. Oper Dent. 2013; 38 (6):E201-209. doi: 10.2341/12-474-L
Boussčsa Y., Brulat-Bouchardb N., BouchardaP.O., Abouelleilc H. & Tilliera Y. (2020)Theoretical prediction of dental compositesyield stress and flexural modulus based onfiller volume ratio Dental Materials 36 (1)97-107. doi: 10.1016/j.dental.2019.10.012