2022, Número 3
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2022; 24 (3)
Efecto de la radioterapia a la adhesión del adhesivo universal al esmalte y dentina? Un análisis cualitativo y cuantitativo?
Oglakci B, Burduroglu D, Eris AH, Mayadagli A, Arhun N
Idioma: Ingles.
Referencias bibliográficas: 39
Paginas: 75-90
Archivo PDF: 319.97 Kb.
RESUMEN
Este estudio investigó la fuerza de unión al cizallamiento (SBS) de un adhesivo universal al esmalte/dentina en piezas que se habían sometido a radioterapia (RT). Se obtuvieron superficies de esmalte y dentina de 90 molares humanos intactos. Se dividieron aleatoriamente en seis grupos según la presencia y el momento de la irradiación (RT0: sin radioterapia/control, RT1: RT antes de la restauración, RT2: RT después de la restauración considerando los modos de aplicación del adhesivo (n=15). Se aplicó un adhesivo universal y resinas compuestas. El protocolo de radioterapia se realizó con 60 Gy. Se sometió a la prueba adhesiva (1mm/min) y se realizó análisis del tipo de falla. Se examinaron las interfases resina-esmalte/dentina. Los datos fueron analizados estadísticamente. Para el esmalte y la dentina, la presencia y el momento de la irradiación no influyeron significativamente en los valores adhesivos (p›0,05). Para el esmalte, se obtuvieron valores adhesivos significativamente más altos utilizando el modo de grabado y enjuague que el modo de autograbado (p
‹0,05). La falla predominante fue de tipo mixto. Se encontró pérdida de prismas de esmalte y túbulos dentinarios irregulares obliterados en las muestras tratadas con radioterapia. La irradiación con diferentes tiempos no influyó negativamente en la fuerza de unión al esmalte ni a la dentina. Independientemente de la radioterapia, el modo de grabado ácido y enjuague provocó una mayor fuerza de adhesión al esmalte que el modo de autograbado.
REFERENCIAS (EN ESTE ARTÍCULO)
Mehanna H., Paleri V., West C.M., Nutting C. Head and neck cancer - Part 1: Epidemiology, presentation and prevention. BMJ. 2010; 341: c4684. doi: 10.1136/bmj.c4684.
Paleri V. & Roland N. Introduction to the United Kingdom National Multidisciplinary Guidelines for Head and Neck Cancer. J Laryngol Otol. 2016; 130(Supplement 2) S3-4. https://doi.org/10.1017/S0022215116000359
National Cancer Registration and Analysis Service. Chemotherapy, Radiotherapy and Surgical Tumour Resections in England: 2013-2015 diagnoses, 2018 http://www.ncin.org.uk/cancer_type_and_topic_specific_work/topic_specific_work/main_cancer_treatments
Jensen S.B., Pedersen A.M.L., Vissink A., Andersen E., Brown C.G., Davies A.N. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life. Support Care Cancer. 2010; 18 (8): 1039-60. https://doi.org/10.1007/s00520-010-0827-8
Hong C.H.L., Napeñas J.J., Hodgson B.D., Stokman M.A., Mathers-Stauffer V., Elting L.S. A systematic review of dental disease in patients undergoing cancer therapy. Support Care Cancer. 2010; 18 (8): 1007-21. https://doi.org/10.1007/s00520-010- 0873-2
Harrington K., Nutting C., Newbold K., Bhide S. Principles and practice of head andneck surgery and oncology. 2nd ed. Chapman and Hall/CRC; 2009.
Kielbassa A.M., Hinkelbein W., Hellwig E., Meyer-Lückel H. Radiation-related damage to dentition. Lancet Oncol. 2006; 7: 326-335.
McGuire J.D., Gorski J.P., Dusevich V., Wang Y., Walker M.P. Type IV collagen is a novel DEJ biomarker that is reduced by radiotherapy. J Dent Res. 2014; 93 (10): 1028-1034.
Fränzel W., Gerlach R. The irradiation action on human dental tissue by X-rays and electrons-a nanoindenter study. Z Med Phys. 2009; 19 (1): 5-10.
Lieshout H.F.J., Bots C.P. The effect of radiotherapy on dental hard tissue-a systematic review. Clin Oral Investig. 2014; 18 (1):17-24. https://doi.org/10.1007/ s00784-013-1034-z
Munoz M.A., Garin-Correa C., Gonzalez-Arriagada W., Davila X.Q., Haberle P., Bedran-Russo A. The adverse effects of radiotherapy on the structure of dental hard tissues and longevity of dental restoration. Int J Radiat Biol. 2020; 96 (7): 910-918.
Ozan G., Owda R., Bektas Kayhan K., Erdemir U. Microtensile bond strength of different bond strength of different modes of universal adhesives to radiotherapy-affected dentin. J Adhes Sci Technol. 2020; 35 (9): 901-912. https://doi.org/10.1080/01694243.2020.1827849
Ugurlu M. Effect of the double application of universal adhesives on the dentine bond strength after radiotherapy. Aust Dent J. 2020; 65 (3): 181-188.
Bulucu B., Avsar A., Demiryurek E.O., Yesilyurt C. Effect of radiotherapy on the microleakage of adhesive systems J Adhes Dent. 2009; 11 (4): 305-309
Hanabusa, M., Kimura S., Hori A., Yamamoto T. Effect of irradiation source on the dentin bond strength of a one-bottle universal adhesive containing an amide monomer. J Adhes Sci Technol. 2019; 33 (20): 2265-2280.
Suzuki M., Takamizawa T., Hirokane E., Ishii R., Tsujimoto, Barkmeier W.W. Bond durability of universal adhesives to intactenamel surface in different etching modes. Eur J Oral Sci. 2021; 129 (2): e12768. doi: 10.1111/eos.12768. Epub 2021 Mar 5
ISO-Standards. ISO 29022 Dentistry-Adhesion-Notched-edge shear bond strength test, ed 1. Geneva, Switzerland: International Organization for Standardization, 2013; 1-12.
Cuncha S.R., Fonseca F.P., Ramos P.A., Haddad C.M.K., Fregnani E.R., Aranha A.C.C. Effects of different radiation doses on the microhardness, superficial morphology, and mineral components of human enamel. Arch Oral Biol. 2017; 80: 130-135.
Murdoch-Kinch C.A., Zwetchkenbaum S. Dental management of the head and neck cancer patient treated with radiation therapy. J Mich Dent Assoc. 2011; 93 (7): 28-37.
Sabatini C. Effect of a chlorhexidine-containing adhesive on dentin bond strength stability Oper Dent. 2013; 38 (6): 609-17.
Perdigão J., Lopes M.M., Gomes G. In vitro bonding performance of self-etch adhesives: II-ultramorphological evaluation. Oper Dent. 2008; 33(5): 534-49. https://doi.org/10.2341/07-13330
Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017; 3(4):524–548.
Yesilyurt C., Bulucu B., Sezen O., Bulut G., Çelik D. Bond strengths of two conventional glass-ionomer cements to irridiated and non-irridiated dentin. Dent Mater J. 2008; 27 (5): 695-701.
Cunha S.R., Ramos P.A., Haddad C.M., Da Silva J.L.F., Fregnani E.R., Aranha A.C.C. Effects of different radiation doses on the bond strengths of two different adhesive systems to enamel and dentin. J Adhes Dent 2016; 18 (2): 151-156
Madrid Troconis C.C., Santos-Silva A.R., Brandão T.B., Lopes M.A., de Goes M.F. Impact of head and neck radiotherapy on the mechanical behavior of composite resins and adhesive systems: a systematic review. Dent Mater. 2017; 33 (11): 1229-1243. https://doi.org/10.1016/j.dental.2017.07.014
rid J., Palma-Dibb R.G., de Oliveira H.F., Nelson-Filho P., Carvalho F.K., Silva LAB. Radiotherapy impairs adhesive bonding in permanent teeth. Support Care Cancer. 2020; 28 (1): 239-247.
Morais-Faria K., Menegussi G., Marta G., Fernandes P.M., Dias R.B., Riberiro A.C.P. Dosimetric distribution to the teeth of patients with head and neck cancer who underwent radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015; 120 (3): 416-419.
Ogawa Y. Paradigm shift in radiation biology/radiation oncology-exploitation of the H2O2 effect for radiotherapy using low-LET (linear energy transfer) radiation such as X-rays and high-energy electrons. Cancers (Basel) 2016, 8 (3): 28 http://dx.doi.org/10.3390/cancers8030028.
Martins C.V., Leoni G.B., Oliveira H.F., Arid J., Qeiroz A.M., Silva LAB. Influence of therapeutic cancer radiation on the bond strength of an epoxy- or an MTA-based sealer to root dentine. Int Endod. J 2016; 49 (11): 1065-1072.
Goncalves L.M., Palma-Dibb R.G., Paula-Silva F.W., Oliveira H.F., Nelson-Filho P. Silva LAB. Radiation therapy alters microhardness and microstructure of enamel and dentin of permanent human teeth. J Dent. 2014; 42 (8): 986-992.
Yadav S., Yadav H. Ionizing radiation affects the microtensile resin dentin bond strength under simulated clinical conditions. J Conserv Dent. 2013; 16 (2): 148-51.
Gernhardt C.R., Kielbassa A.M., Hahn P., Schaller H.G. Tensile bond strengths of four different dentin adhesives on irradiated and non-irradiated human dentin in vitro. J Oral Rehabil. 2001; 28 (9): 814-20.
Naves L.Z., Novais V.R., Armstrong S.R., Correr-Sobrinho L., Soares C.J. Effect of gamma radiation on bonding to human enamel and dentin. Support Care Cancer. 2012; 20 (11): 2873-8.
Biscaro S.L., Moraes R.R., Correr A.B., Almeida S.M., Boscolo F.N., Soares C.J. Effect of X-ray radiation dose on the bond strength of different adhesive systems to dentin. J Adhes Dent. 2009; 11 (5): 355-60.
Yoshihara K., Hayakawa S., Nagaoka N., Okihara T., Yoshida Y., Van Meerbeek B. Etching efficacy of self-etching functional monomers. J Dent Res. 2018; 97 (9): 1010-1016.
Hanabusa, M., Kimura S., Hori A., Yamamoto T. Effect of irradiation source on the dentin bond strength of a one-bottle universal adhesive containing an amide monomer. J Adhes Sci Technol 2019; 33 (20): 2265-2280.
Sai K., Takamizawa T., Imai A., Tsujimoto A., Ishii R., Bark W.W. Influence of application time and etching mode of universal adhesives on enamel adhesion. J Adhes Dent. 2018; 20 (1): 65-77.
Armstrong S., Geraldeli S., Maia R., Raposo L.H. Soares C.J., Yamagawa J. Adhesion to tooth structure: A critical review of ‘‘micro’’ bond strength test methods. Dent Mater. 2010; 26 (2): e50-e62.
Saito T., Takamizawa T., Ishii R., Tsujimoto A., Hirokane E. Barkmeier W.W. Influence of application time on dentin bond performance in different etching modes of universal adhesives. Oper Dent. 2020; 45 (2): 183-195.