2021, Number 3
<< Back Next >>
Rev Acta Médica 2021; 22 (3)
Evaluation of three risk adjustment procedures for hospital stay as a performance indicator
Tamargo BTO, Quesada PS, Gutiérrez RÁR, López LN
Language: Spanish
References: 27
Page:
PDF size: 204.54 Kb.
ABSTRACT
Introduction: The hospital stay is the indicator par excellence of the efficiency
of the services provided. However, it is well known that its changes are not only
subject to efficiency problems, but also to the characteristics of the patients,
which constitute the resource for its calculation.
Objective: To evaluate three risk adjustment procedures for hospital stay as a
performance indicator.
Methods: Retrospective research in the Internal Medicine service at Hermanos
Ameijeiras Clinical Surgical Hospital in 2019 first semester. Five hundred thirty
four (534) medical records of living Cuban patients were included. The capacity
of each procedure to detect inefficiencies in hospital care was evaluated
through the analysis of variance and the construction of ROC curves.
Results: There were significant differences between the three areas under the
ROC curves. For the procedure that uses the Severity Index of Clinical Services
of Hermanos Ameijeiras Hospital, the result was 0.800 (p <0.001) (95% CI 0.749
- 0.851). For the Related Diagnosis Groups, the area under the ROC curve was
0.738 (p <0.001) (95% CI 0.680 - 0.796). In the case of multiple linear regression,
the area under the ROC curve was 0.747 (p <0.001) (95% CI 0.690 - 0.805).
Conclusions: The risk adjustment procedure that estimates the expected stay
from the severity index was the most effective for detecting efficiency
problems. Its use is recommended because its simplest calculation.
REFERENCES
Jiménez Paneque RE. Indicadores de calidad y eficiencia de los servicioshospitalarios: una mirada actual. Rev Cubana Salud Pública. 2004 [acceso:13/08/2009];30(1):17-36. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662004000100004&lng=es&nrm=iso&tlng=es .
Jiménez R, Domínguez E, López L, Fariñas H. Difference between observedand predicted lenght of stay as indicator of patient care inefficiency. Internat J Quality Health Care. 1999;11(5):375-84. DOI:https://doi.org/10.1093/intqhc/11.5.375
Martins M, Blais R, da Costa Leite I. Mortalidade hospitalar e tempo depermanência: comparação entre hospitais públicos e privados na região deRibeirão Preto, São Paulo, Brasil. Cad Saúde Pública. 2004;20(Sup 2):268-82.DOI: https://doi.org/10.1590/S0102-311X2004000800021
Omachonu VK, Suthummanon S, Akcin M, Asfour S. Predicting length of stayfor Medicare patients at a teaching hospital. Health Serv Manage Res.2004;17(1):1-12. DOI: https://doi.org/10.1258/095148404322772688
Tamargo Barbeito TO, Jiménez Paneque RE. El ajuste por riesgo en laevaluación del desempeño hospitalario. Rev Cubana Salud Pública. 2009[acceso: 13/08/2009];35(3). Disponible en:http://bvs.sld.cu/revistas/spu/vol35_3_09/spu10309.htm
Horn SD, Horn RA. Reliability and validity of the severity of illness index. MedCare. 1986;24(2):159-78. DOI: https://doi.org/10.1097/00005650-198602000-00007
Jiménez RE, Vázquez J, Fariñas H. Construcción y validación de un índice degravedad para pacientes hospitalizados en áreas clínicas. Gaceta Sanitaria,Xunta de Galicia. 1997;11:122-30. DOI: https://doi.org/10.1016/S0213-9111(97)71287-1
Kądziołka I, Świstek R, Borowska K, Tyszecki P, Serednicki W. Validation ofAPACHE II and SAPS II scales at the intensive care unit along with assessment ofSOFA scale at the admission as an isolated risk of death predictor. AnaesthesiolIntensive Ther. 2019;51(2):107-111. DOI:http://doi.org/10.5114/ait.2019.86275
Bertoli P, Grembi V. The political economy of diagnosis-related groups. SocSci Med. 2017;190:38-47. DOI:http://doi.org/10.1016/j.socscimed.2017.08.006
Jiao W. Diagnosis-Related Groups' Payment Reform in Beijing. Chin Med J(Engl). 2018;131(14):1763-1764. DOI: http://doi.org/10.4103/0366-6999.235869
Jackson T, Dimitropoulos V, Madden R, Gillett S. Australian diagnosisrelated groups: Drivers of complexity adjustment. Health Policy.2015;119(11):1433-41. DOI: http://doi.org/10.1016/j.healthpol.2015.09.011
Gonnella JS, Louis DZ. Disease staging classification system. Med Care.1987;25(4):360. DOI: https://doi.org/10.1016/S0213-9111(97)71287-1
Abood RA, Hasson HM, Khalaf AA, Saleh EM. Impact of Comorbidities onSurvival Among Patients with Chronic Myeloid Leukaemia Using the CharlsonComorbidity Index: Retrospective study from Basra, Iraq. Sultan Qaboos UnivMed J. 2019;19(3):e236-e41. DOI:http://doi.org/10.18295/squmj.2019.19.03.010
Yang CC, Fong Y, Lin LC, Que J, Ting WC, Chang CL, et al. The age-adjustedCharlson comorbidity index is a better predictor of survival in operated lungcancer patients than the Charlson and Elixhauser comorbidity indices. Eur JCardiothorac Surg. 2018;53(1):235-40. DOI:http://doi.org/10.1093/ejcts/ezx215
Gorbanev I, Agudelo S, Cortes A, Yepes F. Cultura innovadora y gruposrelacionados de diagnóstico en un hospital de alta complejidad, Colombia. RevSalud Pública (Bogotá). 2016 [acceso: 21/04/2021];(2):251-62. Disponible en:https://www.redalyc.org/articulo.oa?id=42245920009
Barragán-Hervella R, Montiel-Jarquín A, Limón-Serrano I, Escobedo-Sosa V,Loria-Castellanos J. Costo directo de la atención primaria del traumatismocraneoencefálico (TCE) leve en adultos mediante grupos relacionados por eldiagnóstico (GRD) en el tercer nivel de atención médica. Gac Med Mex. 2016[acceso: 21/04/2021];152(6):755-60. Disponible en:https://www.anmm.org.mx/GMM/2016/n6/GMM_152_2016_6_755-760.pdf
Reynaldos-Grandón K, Saiz-Alvarez JM, Molina-Muñoz Y. Competenciasprofesionales, gestión clínica y grupos relacionados de diagnósticos. El caso dehospitales públicos chilenos. Rev. Salud Pública. 2018;20(4):472-78. DOI:https://doi.org/10.15446/rsap.v20n4.66564
Yetano Laguna J, López Arbeloa G. Manual de descripción de los GruposRelacionados por el Diagnóstico (AP-GRD v.25.0). 5ta. edición. Administraciónde la Comunidad Autónoma de Euskadi, Gobierno Vasco: Osakidetza; 2010.
Tamargo Barbeito TO, Jiménez Paneque RE, Gutiérrez Rojas AR, Mora DíazI. Dos procedimientos de ajuste por riesgo para la estadía hospitalaria comoindicador de desempeño. Revista Cubana de Salud. 2012 [acceso:21/03/2021];38(1):29-44. Disponible en:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662012000100004&lng=es
Librero J, Peiró S, Ordiñana R. Comorbilidad crónica y homogeneidad de losgrupos diagnósticos relacionados. Gaceta Sanitaria 1999;13(4):292-302. DOI:https://doi.org/10.1016/S0213-9111(99)71371-3
Organización Panamericana de la Salud. Clasificación estadísticainternacional de enfermedades y problemas relacionados con la salud. 9na.Revisión. Washington DC, EEUU: OPS; 1975. Vol. 1
Ministerio de Sanidad y Consumo. El proyecto NIPE y el proyecto Análisis ydesarrollo de los GDR en el Sistema Nacional de Salud. España; Centro dePublicaciones. 2005 [acceso: 30/04/2021]:83-93. Disponible en:https://1library.co/document/zgrww1vq-capitulo-proyecto-proyecto-analisisdesarrollo-sistema-nacional-salud.html#fulltext-content
Cerda J, Cifuentes L. Uso de curvas ROC en investigación clínica: Aspectosteórico-prácticos. Rev Chil infectol. 2012 [acceso: 21/11/2019];29(2):138-41.Disponible en:https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-10182012000200003&lng=es
Bernard AM, Mynard R, Rosevear JS, McMahon LF. The integrated inpatientmanagement. Med Care. 1995;7:663-75. DOI:https://doi.org/10.1097/00005650-199507000-00003
Ryan S, Lowe CS, Hardes G. A quantitative approach to quality improvementand resource allocation. Qual Clin Pra. 1995;15:11-6. PMID: 7757319
Jiménez Paneque RE, Lam RM, Marot M, Delgado A. Observed-predictedlength of stay for an acute psychiatric department, as an indicator of inpatientcare inefficiencies. Retrospective case-series study. BMC Health Serv Res.2004;4:4. DOI: http://doi.org/10.1186/1472-6963-4-4
Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd ed. John Wiley& Sons, Inc. 2000. pp. 156-164.