2022, Number 6
<< Back Next >>
Med Int Mex 2022; 38 (6)
Probabilistic analysis of cardiac dynamics for 20 hours in diabetic patients
Rodríguez-Velásquez JO, Correa-Herrera SC, Salazar-Flórez J, Prieto-Bohórquez SE, Valdés-Cadena, CA
Language: Spanish
References: 24
Page: 1147-1154
PDF size: 208.98 Kb.
ABSTRACT
Objective: To test the diagnostic performance of a methodology based on probability
theory applied for 20 hours analyzing Holter records of diabetic subjects and to confirm
its clinical applicability.
Materials and Methods: A prospective observational study was made in which
Holter records were collected from December 2019 to June 2020. The minimum and
maximum heart rate values were extracted as well as the number of beats per hour to
apply the diagnostic criteria of the probabilistic methodology through a blinded study.
Sensitivity and specificity values were calculated.
Results: A total of 48 Holter records were collected, which included 30, 14 and 4
records of subjects with cardiovascular disease without diabetes, with cardiovascular
disease and diabetes, and with diabetes without heart disease, respectively. The
cardiac dynamics of diabetic patients exhibited a mathematical behavior that varied
between the disease and the evolution to the disease, similar to the cardiac dynamics
of subjects with cardiovascular disease. The sensitivity and specificity values were
97% and 100%, respectively.
Conclusions: The clinical applicability of a diagnostic methodology of cardiac
dynamics in the context of diabetes mellitus and cardiovascular disease was confirmed,
suggesting that this method is applicable to describe cardiac risk in this population.
REFERENCES
OMS. Datos y Cifras. 10 datos sobre la diabetes. Disponibleen: http://www.who.int/features/factfiles/diabetes/facts/es/index.html.
OMS. Centro de Prensa. Nota descriptiva N°312. Septiembrede 2011. Disponible en: http://www.who.int/mediacentre/factsheets/fs312/es/index.html.
Kasper D, Fauci A, Hauser S, Longo D, Loscalzo J, JamesonJ. Harrison's Principles of Internal Medicine, 19th ed. NewYork: McGraw Hill; 2015.
Asociación Colombiana de Diabetes. HbA1c y riesgo cardiovascular.Diabetes al día. 27 de enero de 2012. Disponibleen: http://www.asodiabetes.org/novedades_boletin.php?Id_Noticia=163&Id_Categoria=8.
Haffner SM, Lheto S, Ronnemaa T, Pyorala K, Laaloo M.Mortality from coronary heart disease in subjects with type2 diabetes and in no diabetes subjects with and withoutprior myocardial infarction. N Engl J Med 1998; 339: 229-34. doi: 10.1056/NEJM199807233390404.
Pineda M, Matiz H, Rozo R. Enfermedad coronaria. Bogotá:Editorial Kimpres Ltda; 2002.
Bode F, Burgdorf C, Schunkert H, Kurowski V. 24 hourST segment analysis in transient left ventricular apicalballooning. PLoS One 2013; 8 (3): e58349. doi: 10.1371/journal.pone.0058349.
Sessa F, Anna V, Messina G, Cibelli G, Monda V, Marsala G,et al. Heart rate variability as predictive factor for suddencardiac death. Aging (Albany NY). 2018; 10 (2): 166-177.doi: 10.18632/aging.101386.
Choi KW, Jeon HJ. Heart rate variability for the predictionof treatment response in major depressive disorder. FrontPsychiatry 2020; 11: 607. doi: 10.3389/fpsyt.2020.00607.
Wolf M, Varigos G, Hunt D, Sluman J. Sinus arrhythmia inacute myocardial infarction. Med J Aus 1978; 2: 52-53.
Feynman RP, Leighton RB, Sands M. Probabilidad. En: FeynmanRP, Leighton RB, Sands M. Física. Vol. 1. Wilmington:Addison-Wesley Iberoamericana, SA. 1964: 6-1, 6-16.
Mood A, Graybill F, Boes D. Introduction to the theory ofstatistics. 3rd ed. Singapore Mc. Graw-Hill, 1974.
Rodríguez J, Prieto S, Correa C, Bernal P, Vitery S, Álvarez L,et al. Diagnóstico cardiaco basado en la probabilidad aplicadoa pacientes con marcapasos. Acta Med Colomb 2012;37 (4): 183-191. https://doi.org/10.36104/amc.2012.177.
Rodríguez J, Correa C, Ortiz L, Prieto S, Bernal P, Ayala J.Evaluación matemática de la dinámica cardiaca con la teoríade la probabilidad. Rev Mex Cardiol 2009; 20 (4): 183-9.
Rodríguez J, Prieto S, Paéz J, Correa C, Montenegro C,Cortés J, et al. Evaluación de registros Holter durante 19horas en el contexto de la teoría de la probabilidad. RevChil Cardiol 2019; 38 (1): 20-28.
Cabrales M, Vanegas D. Manual de métodos diagnósticosen electrofisiología cardiovascular. Bogotá: Sociedad Colombianade Cardiología y Cirugía Cardiovascular; 2006.
Palma J, Jiménez A, González J, Marín E, Martín E. Guíasde práctica clínica de la Sociedad Española de Cardiologíaen la monitorización ambulatoria del electrocardiogramay presión arterial. Revista Española de Cardiología 2000;53 (1): 91-109.
Huikuri HV, Stein PK. Heart rate variability in risk stratificationof cardiac patients. Prog Cardiovasc Dis 2013; 56 (2):153-9. doi: 10.1016/j.pcad.2013.07.003.
Silva-E-Oliveira J, Amélio PM, Abranches ILL, DamascenoDD, Furtado F. Heart rate variability based on risk stratificationfor type 2 diabetes mellitus. Einstein (Sao Paulo) 2017;15 (2): 141-147. doi: 10.1590/S1679-45082017AO3888.
Shaffer F, Ginsberg JP. An overview of heart rate variabilitymetrics and norms. Front Public Health 2017; 5: 258. doi:10.3389/fpubh.2017.00258.
Rodríguez J, Ramírez L. Confirmación diagnóstica de lametodología diseñada para evaluar los registros Holterdurante 18 horas mediante la entropía proporcional.Rev Colomb Cardiol 2021; 28: 136-145. https://doi.org/10.24875/rccar.m21000027.
Rodríguez J. Teoría de unión al HLA clase II: teorías de ProbabilidadCombinatoria y Entropía aplicadas a secuenciaspeptídicas. Inmunología 2008; 27 (4): 151-66. doi: 10.1016/S0213-9626(08)70064-7.
Rodríguez J. Método para la predicción de la dinámicatemporal de la malaria en los municipios de Colombia. RevPanam Salud Pública 2010; 27 (3): 211-8.
Rodríguez J. Dynamical systems applied to dynamic variablesof patients from the Intensive Care Unit (ICU). Physicaland mathematical mortality predictions on ICU. J Med MedSci 2015; 6 (8): 209-220. DOI: http:/dx.doi.org/10.14303/jmms.2015.115.