2022, Number 44
<< Back Next >>
Inv Ed Med 2022; 11 (44)
The p-value: how to analyze it to separate from extreme positivism and naive inductivism?
Padilla-Santamaría F
Language: Spanish
References: 15
Page: 105-114
PDF size: 578.83 Kb.
ABSTRACT
Despite the new reflections and ideological currents in
medical sciences, many researchers remain firmly attached
to scientific positivism, naive inductivism and totally
reductionist views, where the use of inferential statistics is
considered almost indispensable to consider a “high quality”
research, and within it, consider the famous
p-value
as the number that determines that a study is “good” or
“bad”, that it is worthwhile or not, that it came out “good”
or “bad”. Although inferential statistics is the most frequent
in medical sciences, many researchers continue with
epistemological problems for the
p-value interpretation
and make statistical decisions; Therefore, the main objective
of this work is to provide a reflection and dynamic
analysis of what is
p-value, how it is obtained, how it is
usually interpreted, and how it should be interpreted.
It should be noted that this paper does not intend to
teach statistics, but rather tries to change the way in which
students and health professionals interpret inferential statistics,
in order to encourage critical reading and thus
provide weapons for self-taught learning. To arrive at the
appropriate analysis of the p-value, throughout the work
I carry out a general and graphic review about the construction
of hypotheses, the normal distribution and the
hypothesis tests.
Although the simple fact that this work talks about inferential
statistics already makes it (until a certain point) a
positivist article, I hope that the new teaching in this area
will allow the training of new professionals and researchers
with broader visions of research, and thus, ending
the promotion of reductionism and naive inductivism.
REFERENCES
Pérez J. El Positivismo y la Investigación Científica. RevEmpres. 2015;9(3):29-34. Disponible en: https://editorial.ucsg.edu.ec/ojs-empresarial/index.php/empresarial-ucsg/article/view/20
Chalmers AF, (aut.), Pérez E, (trad.). ¿Qué es esa cosa llamadaciencia? Una valoración de la naturaleza y el estatutode la ciencia y sus métodos. 2a ed. Ciudad de México: SigloXXI Editores; 2019.
Kremer-Marietti A. El Positivismo. 2a ed. México: PublicacionesCruz; 1989.
Rodríguez MI, Albert A, Agnelli H. Pruebas de hipótesis y elvalor p: usos e interpretaciones. En: Buendía G, Castañeda A.(eds.). Memoria de la XII Escuela de Invierno en MatemáticaEducativa. Ciudad Madero: Universidad de Los Andes; 2009.104-117. Disponible en: http://funes.uniandes.edu.co/16270/
Daniel WW. Prueba de hipótesis. En: Daniel WW. (aut.),León F. (trad.). Bioestadística. Base para el análisis de lasciencias de la salud. 4a ed. México: Limusa Wiley; 2013.p. 204-94.
Romero N. La revolución en la toma de decisiones estadísticas:el p-valor. Telos. 2012;14(3):439-446. Disponible en:http://www.redalyc.org/articulo.oa?id=99324907004
Daniel WW. Estadística descriptiva. En: Daniel WW. (aut.),León F. (trad.). Bioestadística. Base para el análisis de lasciencias de la salud. 4a ed. México: Limusa Wiley; 2013.p. 15-56.
Daniel WW. Estadística no paramétrica y de libre distribución.En: Daniel WW. (aut.), León F. (trad.). Bioestadística.Base para el análisis de las ciencias de la salud. 4a ed. México:Limusa Wiley; 2013. p. 658-736.
Candia R, Caiozzi G. Intervalos de Confianza. Rev Med Chile.2005;133:1111-1115. doi: 10.4067/S0034-98872005000900017
Flores-Ruiz E, Miranda-Novales MG, Villasís-Keever MÁ.El protocolo de investigación VI: cómo elegir la prueba estadísticaadecuada. Estadística inferencial. Rev Alerg Mex.2017;64(3):364-370. doi: 10.29262/ram.v64i3.304
Tovar CM. El falsacionismo de Popper y sus objeciones almarxismo. Letras. 2019;90(131):210-228. doi: 10.30920/letras.90.131.9
Carvalho J, Patino CM. O que realmente significa o valorp? J Bras Pneumol. 2015;41(5):485. doi: 10.1590/S1806-37132015000000215
Kline RB. Research Trinity. Design, measurement andanalysis. En: Kline RB. (aut.). Becoming a behavioral scienceresearcher: a guide to producing research that matters. 2aed. Nueva York: The Guilford Press; 2020. p. 14-47.
Williamson J. Establishing Causal Claims in Medicine. Int StudPhilos Sci. 2019;32(1):33-61. doi: 10.1080/02698595.2019.1630927
The RECOVERY Collaborative Group. Dexamethasone inHospitalized Patients with Covid-19. N Engl J Med. 2021;384:693-704. doi: 10.1056/NEJMoa2021436