2022, Number 3
<< Back Next >>
Rev Nefrol Dial Traspl 2022; 42 (3)
Method for predicting the probability of kidney transplantation for patients on the waiting list in Colombia
Zhang GC, Lamprea BN, López-Kleine L
Language: Spanish
References: 14
Page: 225-239
PDF size: 972.08 Kb.
ABSTRACT
Introduction: The criteria for organ
distribution in Colombia establish an
initial local distribution, then regional
and finally national. In December
2019, 2,822 people were on the kidney
transplant waiting list in Colombia,
assigned mostly to the Bogotá and IPS
regions with the largest waiting lists.
This high concentration of patients
could be generating unwanted effects
on the opportunity that patients have to
receive a kidney transplant.
Objectives:
In this paper we seek to study, based
on synthetic data generated with the
information available from the INS,
the probability of organ allocation, identifying
the most informative variables and proposing a
method to calculate the probability of allocation
for a given patient on the waiting list of organs.
Material and methods: The adjustment of a model
based on decision trees is presented, which showed
a high precision and allows the prediction of the
probability of obtaining an organ.
Results: Time,
transplant IPS and blood group were identified
as the most informative variables. Likewise, there
are differences in the time it takes to obtain
kidney transplants between regions and between
transplanting IPS due to the effect of the size of
their waiting list.
Conclusions: The proposed
method allows us to identify the importance of the
variables that define obtaining an organ. Finally,
for a given patient, it is possible to estimate the
probability of being classified in one of the outcome
categories.
REFERENCES
Tonelli M, Wiebe N, Knoll G, et al. Systematic review:kidney transplantation compared with dialysis inclinically relevant outcomes. Am J Transplant. 2011;11(10):2093-2109.
Instituto Nacional de Salud. 2018. Criterios deAsignación para Trasplante Renal en Colombia.Fecha de consulta: Marzo 2021. Disponible: http://www.ins.gov.co/Direcciones/RedesSaludPublica/DonacionOrganosYTejidos/Paginas/default.aspx
Informe Nacional de Salud. Red Nacional de Donacióny Trasplantes 2019. Informe Ejecutivo. Disponible:https://www.ins.gov.co/BibliotecaDigital/informeejecutivo-red-donacion-y-trasplantes-2019.pdf
Instituto Nacional de Salud. Informe anual red dedonación y trasplantes.Colombia, 2018. Disponible:https://www.ins.gov.co/BibliotecaDigital/informeanual-red-de-donacion-trasplantes-2018.pdf
Departamento Nacional de Estadística. Población deColombia es de 48,2 millones de habitantes, según elDANE. Disponible en: https://id.presidencia.gov.co/Paginas/prensa/2019/190704-Poblacion-de-Colombiaes-de-48-2-millones-habitantes-segun-DANE.Aspx
R Core Team (2020). R: A language and environmentfor statistical computing. R Foundation for StatisticalComputing, Vienna, Austria. Disponible: https://www.R-project.org/.
Beltrán M, Ayala M, Jara J. Frecuencia de grupossanguíneos y factor Rh en donantes de sangre, Colombia,1996. Biomédica. 1999; 19(1): 39-44.
Allele Frecuency Net Database . Disponible: http://www.allelefrequencies.net/
Tangirala S. Evaluating the Impact of GINI Index andInformation Gain on Classification using DecisionTree Classifier Algorithm*. Int J Adv Comput Sci Appl.2020;11(2): 612-19.
Elkan Ch. Evaluating Classifiers. University ofCalifornia, San Diego, 18 de enero de 2011. Disponibleen: https://web.archive.org/web/20111218192652/http:/cseweb.ucsd.edu/~elkan/250B/classifiereval.pdf
Efron B. Bootstrap Methods: Another Look at theJackknife. The Annals of Statistics. 1979; 7(1):1–26.
Lima B. A call for open data of renal transplantationin Portugal. Port J Nephrol Hypert. 2017; 31(3): 155-7.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,B. Thirion, O. Grisel, J. Vanderplas. Scikit-learn:machine learning in Python J. Mach. Learn. Res., 12(2011), pp. 2825-2830.
Canty A, Ripley BD (2021). boot: Bootstrap R (S-Plus)Functions. R package version 1.3-28.