2021, Number 2
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2021; 37 (2)
Scope of stem cells derived from adipose tissue
Tamayo CAM, Escobar VH, Cuastumal FDK
Language: Spanish
References: 35
Page: 1-20
PDF size: 332.10 Kb.
ABSTRACT
Introduction: Mesenchymal stem cells with self-renewing and multipotential capacity have been identified in adipose tissue. By means of enzymatic digestion and centrifugation of the lipoaspirate a heterogeneous population of cells called vascular stromal fraction is released. It has innumerable therapeutic potentialities in the field of regenerative medicine.
Objective: To update the scope of stem cells derived from adipose tissue in regenerative therapy.
Method: 38 articles published between 2000 and 2019 in the Scielo, ScienceDirect, Medline and Pubmed databases were reviewed.
Development: The cells of the vascular stromal fraction are characterized by generating adipose tissue and blood vessels and by the production of growth factors that help in the survival of adipocytes and the formation of a vascular network. The main mechanism of action of stem cells derived from adipose tissue appears to be due to their paracrine action and synergy with endothelial cells. Stem cells derived from adipose tissue have been used in regenerative medicine for the treatment of pathological scars and deforming fibrosis with functional impotence, in the reconstruction of cancer sequelae and in the early closure of bloody areas.
Conclusions: Lipotransfer is a procedure with a minimum of complications that constitutes one of the most widely used therapeutic options to correct tissue defects, since it is not only a filling medium, but also allows tissue regeneration and restoration. The presence of stem cells in adipose tissue, together with their accessibility, availability and histocompatibility, has motivated their increasingly widespread application in aesthetic, reconstructive and regenerative medicine.
REFERENCES
Meruane M. Lipoinyección: Conceptos básicos y aplicación clínica. Rev Méd Clín Condes. 2016; 27(1):93-106.
Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, et al. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007 Apr 15;119(5):1409-22. DOI: https://10.1097/01.prs.0000256047.47909.71
Isaza CA, Henao J, Aranzazu J. La medicina regenerativa: fundamentos y aplicaciones. Rev Méd Risaralda. 2018; 24(2): 119-24.
Zapata Linares NM, García Quiroz F. Preguntas y respuestas sobre medicina regenerativa. Rev Ing Biomed. 2011;5(10):23-30.
Hernández Ramírez P. Aplicación de la medicina regenerativa en Cuba entre 2004- 2017: avances y beneficios. Rev Cubana Hematol Inmunol Hemoter. 2018; 34(1): 1-4.
Bonora Centelles A, Castell JV, Gómez Lechón MJ. Células madre del tejido adiposo: plasticidad hepática. Gastroenterol Hepatol. 2008; 31(5):299-309.
Sánchez JC, Romero C, Muñoz LV, Rivera RA. Adipose organ, a metabolic and endocrine regulating rainbow. Rev Cubana Endocrinol. 2016; 27(1):105-19.
Pineda Molina C, Londoño Peláez C. Obtención de células madre del tejido adiposo y su potencial de diferenciación osteogénico. Rev Ing Biomed. 2009; 3(5):58-65.
Mejia Montilla J, Reyna Villasmil E, Álvarez Mon M, Fernández Ramírez A. Células madre pluripotentes inducidas y adipogénesis. Rev Venezolana Endocrinol Metabol. 2018; 16(1):3-11.
Herrera AC, Chirivella OJ. Bolsa adiposa de Bichat: fuente alternativa de células madres, uso quirúrgico e ilustración de técnica - Revisión de literatura. Acta Odontol Venezolana. 2019 (acceso: 24/04/2020). Disponible en: https://www.actaodontologica.com/ediciones/2019/2/art-6/ 11. Sánchez M, Valverde C, Lemos P, Takimura C, Kerkis I. Células madre de tejido adiposo y la importancia de la estandarización de un modelo animal para experimentos preclínicos: Articulo de revisión. Rev Bras Cardiol Invasiva. 2013; 21(3):1-7.
Quesada Leyva L, León Ramentol C, Fernández Torres S, Nicolau Pestana E. Stem cells: a revolution in regenerative medicine. MEDISASN. 2017; 21(5): 576. 13. Castro B. Aplicaciones clínicas de las células madre del tejido adiposo. Cir Plást Iberolatinoam. 2013; 39(1):29-32.
Bustos Araya S, Montenegro Matamoros Y, Swirgs de Baltodano C, Trigueros Hernández D, Vargas González R, Mora Román JJ. Obtención de células madre mesenquimales y participación de estas en la modulación de la respuesta inmune Tecnología en Marcha. 2018; 31(3):29-40. 15. Serna Cuéllar E, Santamaría Solís L. Protocol of extraction and processing of adult stem cells from abdominal adipose tissue: coordenates of the plastic surgeon in translational researching. Cir Plást Iberolatinoam. 2013; 39(1):44-50.
Obaíd M, Riquelme R, Calderón W, Raue M, Rojas M. Method of isolation, culture and hypoxia preconditioning of adipose tissue stem cells in rats. Cir Plást Iberolatinoam. 2019; 45(2):107-14.
Salazar Vargas G, Neyra Chagua V, Pitot Álvarez C, Muñoz Jáuregui A, Aguilar Mendoza L. Estudios en neurociencias: aportes para la investigación en cultivo de células madre mesenquimales. Persona. 2018; 21(1):109-17.
Socarrás Ferrer B, Del Valle Pérez L, Bernal K, Galván Cabrera J, Bencomo Hernández, Abraham C. Adipose tissue as an alternative source for regenerative medicine. Rev Cubana Hematol Inmunol Hemoter. 2013; 29(4):340-8.
Castro Piedra S, Morales Sánchez J. Aislamiento de células madre mesenquimales derivadas de tejido adiposo del pliegue inguinal murino: un protocolo para obtener lo mejor de pequeñas muestras. Revista Tecnología en Marcha. 2019;32(4):69-80. DOI https://doi.org/10.18845/tm.v32i4.4793
Park BS, Kim W, Choi JS. Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. Biomed Res. 2010; 31(1):27-34.
Barret JP. El uso de células madre logra difuminar las cicatrices de las quemaduras. Cirugía plástica, estética y reparadora. 2014 (acceso 17/04/2020) Disponible en: https://farmacosalud.com/el-uso-de-celulas-madre-logra-difuminar-las-cicatrices-de-las-quemaduras/
Balmelli B, Mussi D, Canese J, Sandoval J. Tratamiento de secuelas tardías de cicatrices en quemaduras utilizando la Fracción del Estroma Vascular (FEV) derivadas del tejido adiposo a partir de lipoaspirados humanos. Rev Salud Pública Parag. 2018 Jun; 8(1): 27-34
Fan D, Xia Q, Wu S, Ye S, Liu L, Wang W, Guo X, Liu Z. Mesenchymal stem cells in the treatment of Cesarean section skin scars: study protocol for a randomized, controlled trial. Trials. 2018 Mar 2;19(1):155. DOI: https://10.1186/s13063-018-2478-x
Pérez Willis W, Yance Morales M, Pérez Soto W. Isolation technique of the stromal vascular fraction derived from adipose tissue: obtaining adult stem cells for various applications. Cir Plást. 2019; 29(2):202-9. DOI: https://10.35366/91712
Meruane M, Benítez S, Rojas M, Sagredo A, Marcelain K, Villalobos B. Induced epithelialization by adipose tissue derived stem cells. Cir Plást Iberolatinoam. 2014; 40(2):125-131.
University of Pennsylvania School of Medicine. Stem cells collected from fat may have use in anti-aging treatments. Penn medicine news. 17 February 2017 acceso 13/04/2020). Disponible en: https://www.pennmedicine.org/news/news-releases/2017/february/stem-cells-collected-from-fat-may-have-use-in-anti-aging-treatments
Planas J, Muñoz J, Gonzales D. Description of a new closed system to process fat and to obtain nanofat: analysis of clinical and cytometric results. Cir Plást Iberolatinoam. 2017; 43(1):23-32.
Auclair E, Blondeel P, Del Vecchio DA. Composite breast augmentation: soft-tissue planning using implants and fat. Plast Reconstr Surg. 2013 Sep;132(3):558-568. DOI: https://10.1097/PRS.0b013e31829ad2fa
Del Vecchyo C, Espinosa Maceda S. Fat grafts in aesthetic facial surgery. Cir Plást Iberolatinoam. 2013; 39(1):26-8.
Arana E, Pérez M, Barret J. Stem-cells enriched lipofilling in pediatric population with Parry-Romberg syndrome. Update. Cir Plást Iberolatinoam. 2013; 39(1):99-106.
Rodríguez Pérez E, González Porto SA, Palacios García P, Bugallo Sanz JI, González Rodríguez A, Pacheco Compaña F. Oncologic safety of autologous fat grafting as a secondary breast reconstructive technique. Rev Senol Patol Mamaria. 2018; 31(3):102-7. DOI: https://10.1016/j.senol.2018.03.004
Fluxá D, Silva G. Stem cells: foundations and clinical experience in liver diseases review. Rev Med Clin Condes. 2017; 28(2):314-21.
Tello Vera S. Idiopathic pulmonary fibrosis treated with mesenchymal stem cells Allogenic derived from adipose tissue. Case report. Rev Cuerpo Méd. 2018. (acceso 17/04/2020); 11(4):250-52.
Badimon L, Oñate B, Vilahur G. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease. Rev Española Cardiol. 2015; 68(7):599-611.
Castañeda S, Gonzales I. Novelties in the therapeutic scene of rheumatoid arthritis. Reumatol Clin. 2017; 13(2):63-5. DOI: https://10.1016/j.reuma.2017.02.001
Lanas A, Gutiérrez C, Mardones R, Larraín C. Intracordal inyection of mesenchymal stem cells in scarred vocal folds: Preliminary report. Rev Otorrinolaringol Cir Cabeza Cuello. 2015; 75:96-105.
Hernández Ramírez P. Is it really useful the treatment with regenerative cell therapy? Rev Cubana Hematol Inmunol Hemoter. 2017 (acceso: 25/04/2020); 33(1):1-13.
Aguilar Pérez D. Reparación de lesiones medulares con células madre. (Trabajo Fin de Grado) España: Universidad del País Vasco; 2017. Disponible en: http://www.oc.lm.ehu.es/Departamento/TFG/TFG%20Daniel%20Aguilar.pdf