2021, Número 2
<< Anterior Siguiente >>
Rev Cubana Hematol Inmunol Hemoter 2021; 37 (2)
Enfermedad granulomatosa crónica: fisiopatología genética y molecular. Pruebas diagnósticas vigentes
Hernández RE, Marsán SV
Idioma: Español
Referencias bibliográficas: 50
Paginas: 1-17
Archivo PDF: 342.26 Kb.
RESUMEN
Introducción: La enfermedad granulomatosa crónica es una inmunodeficiencia primaria congénita del sistema inmune innato, originada por defectos en el complejo enzimático nicotinamida adenina dinucleótido fosfato oxidasa presente en células fagocíticas. Estos defectos funcionales causan incapacidad para producir especies reactivas del oxígeno en los fagocitos, que afectan la eliminación de algunos microorganismos patógenos dentro del fagolisosoma. El diagnóstico de esta enfermedad se realiza actualmente mediante la prueba de 1,2,3-dihidrorodamina asistida por citometría de flujo multiparamétrica, o la tinción de fagocitos con nitroazul de tetrazolio asistida por microscopio óptico.
Objetivos: Describir los aspectos fisiopatológicos y moleculares de la enfermedad granulomatosa crónica; y discutir aspectos relacionados con las pruebas de diagnóstico antes mencionadas.
Métodos: Se realizó una investigación bibliográfica-documental a partir de artículos científicos publicados desde 1933 hasta 2018, para ello fueron consultadas las bases de datos SciELO, PubMed y Springer.
Desarrollo: Se exponen las características fisiopatológicas de la enfermedad granulomatosa crónica, así como la relación entre las mutaciones genéticas más abundantes en la población afectada y la gravedad de las manifestaciones clínicas que presentan los pacientes. Además, se analizan críticamente los beneficios y las deficiencias de dos técnicas que se utilizan actualmente para diagnosticar la enfermedad.
Conclusiones: La enfermedad granulomatosa crónica puede generar consecuencias inmunológicas e inflamatorias graves, que se hallan en consonancia con las características genéticas expresadas en el complejo enzimático dañado. El diagnóstico de la enfermedad resulta más confiable, exhaustivo y específico, mediante la citometría de flujo y su prueba de 1,2,3-dihidrorodamina.
REFERENCIAS (EN ESTE ARTÍCULO)
Arnold DE, Heimall JR. A review of chronic granulomatous disease. Adv Ther. 2017;34(12):2543-57.
Kutlug S, Sensoy G, Birinci A, Saraymen B, Köker MY, Yildiran A. Seven chronic granulomatous disease cases in a single-center experience and a review of the literature. Asian Pac J Allergy Immunol. 2018;36(1):35-41.
Muñoz Cerón J, Botello MV, Consuelo-Casas M, Díaz DA, Ortega MC. Enfermedad granulomatosa crónica: reporte de caso. Pediatr. 2015;48(3):80-5.
Yu JE, Azar AE, Chong HJ, Jongco AM, III, Prince BT. Considerations in the Diagnosis of Chronic Granulomatous Disease. J Pediatr Infect Dis Soc. 2018;7(suppl_1): S6-S11.
Giardino G, Cicalese MP, Delmonte O, Migliavacca M, Palterer B, Loffredo L, et al. NADPH Oxidase Deficiency: A Multisystem Approach. Oxid Med Cell Longev. 2017; 2017:4590127.
Medrano-E’Vers A, Morales-Hernández AE, Valencia-López R, Hernández-Salcedo DR. Enfermedad granulomatosa crónica. Med Int Mex. 2017;33(3):407-14.
Bridges RA, Berendes H, Good RA. A Fatal Granulomatous Disease of Childhood: The Clinical, Pathological, and Laboratory Features of a New Syndrome. AMA J Dis Child. 1959;97(4):387-408.
Rider NL, Jameson MB, Creech CB. Chronic Granulomatous Disease: Epidemiology, Pathophysiology, and Genetic Basis of Disease. J Pediatr Infect Dis Soc. 2018;7(suppl_1):S2-S5.
Keller MD, Notarangelo LD, Malech HL. Future of Care for Patients with Chronic Granulomatous Disease: Gene Therapy and Targeted Molecular Medicine. J Pediatr Infect Dis Soc. 2018;7(suppl_1):S40-S4.
Gennery A. Recent advances in understanding and treating chronic granulomatous disease. F1000Research. 2017; 6:1427.
Thomsen IP, Smith MA, Holland SM, Creech CB. A Comprehensive Approach to the Management of Children and Adults with Chronic Granulomatous Disease. J Allergy Clin Immunol. 2016;4(6):1082-8.
Kulkarni M, Desai M, Gupta M, Dalvi A, Taur P, Terrance A, et al. Clinical, Immunological, and Molecular Findings of Patients with p47phox Defect Chronic Granulomatous Disease (CGD) in Indian Families. J Clin Immunol. 2016;36(8):774-84.
Al-Zadjali S, Al-Tamemi S, Elnour I, AlKindi S, Lapoumeroulie C, Al-Maamari S, et al. Clinical and molecular findings of chronic granulomatous disease in Oman: family studies. Clin Genet. 2015;87(2):185-9.
Abo A, Webb MR, Grogan A, Segal AW. Activation of NADPH oxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane. Biochem J. 1994;298(3):585-91.
Baldridge C, Gerard R. The extra respiration of phagocytosis. Am J Physiol. 1933;103(1):235-6.
Selvaraj R, Sbarra A. The role of the phagocyte in host-parasite interactions: VII. Di-and triphosphorydine nucleotide kinetics during phagocytosis. Biochimin Biophys Acta-Gen Subj. 1967;141(2):243-9.
Cross AR, Rae J, Curnutte JT. Cytochrome b of the Neutrophil Superoxide-generating System Contains Two Nonidentical Hemes: potentiometric studies of a mutant form of gp91. J Biol Chem. 1995;270(29):17075-7.
Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503-21.
Quie PG, White JG, Holmes B, Good RA. In Vitro Bactericidal Capacity of Human Polymorphonuclear Leukocytes: Diminished Activity in Chronic Granulomatous Disease of Childhood. J Clin Invest. 1967;46(4):668-79.
Bennett N, Maglione PJ, Wright BL, Zerbe C. Infectious Complications in Patients with Chronic Granulomatous Disease. J Pediatr Infect Dis Soc. 2018;7(suppl_1):S12-S7.
King J, Henriet SS, Warris A. Aspergillosis in chronic granulomatous disease. J Fungi. 2016;2(2):15.
Vélez Tobón GJ, Rocha Arrieta YC, Arias Sierra AA, López Quintero JÁ. Función del sistema NADPH oxidasa en la formación de trampas extracelulares de los neutrófilos (NETs). Rev Cub Hematol Inmunol Hemoter. 2016;32(1):43-56.
Hartl D, Lehmann N, Hoffmann F, Jansson A, Hector A, Notheis G, et al. Dysregulation of innate immune receptors on neutrophils in chronic granulomatous disease. J Allergy Clin Immunol. 2008;121(2):375-82.e9.
Dinauer MC. Primary immune deficiencies with defects in neutrophil function. Hematology. 2016;2016(1):43-50.
Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-41.
Marzaioli V, Hurtado-Nedelec M, Pintard C, Tlili A, Marie J-C, Monteiro RC, et al. NOX5 and p22phox are 2 novel regulators of human monocytic differentiation into dendritic cells. Blood. 2017;130(15):1734-45.
Schwenkenbecher P, Neyazi A, Donnerstag F, Ringshausen FC, Jacobs R, Stoll M, et al. Chronic Granulomatous Disease First Diagnosed in Adulthood Presenting With Spinal Cord Infection. Front Immunol. 2018;9:1258.
Khan TA, Cabral-Marques O, Schimke LF, de Oliveira EB, Jr., Amaral EP, D'Império Lima MR, et al. Tuberculosis in an autosomal recessive case of chronic granulomatous disease due to mutation of the NCF1 gene. Allergol Immunopath. 2016;44(3):276-9.
Schäppi MG, Jaquet V, Belli DC, Krause K-H. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol. 2008;30(3):255-71.
Khangura SK, Kamal N, Ho N, Quezado M, Zhao X, Marciano B, et al. Gastrointestinal features of chronic granulomatous disease found during endoscopy. Clin Gastroenterol Hepatol. 2016;14(3):395-402. e5.
Henrickson SE, Jongco AM, Thomsen KF, Garabedian EK, Thomsen IP. Noninfectious Manifestations and Complications of Chronic Granulomatous Disease. J Pediatr Infect Dis Soc. 2018;7(suppl_1):S18-S24.
O’Neill S, Brault J, Stasia M-J, Knaus UG. Genetic disorders coupled to ROS deficiency. Redox Biol. 2015;6:135-56.
Messina CGM, Reeves EP, Roes J, Segal AW. Catalase negative Staphylococcus aureus retain virulence in mouse model of chronic granulomatous disease. FEBS Lett. 2002;518(1-3):107-10.
Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE, et al. Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med. 2010;363(27):2600-10.
Battersby AC, Cale CM, Goldblatt D, Gennery AR. Clinical Manifestations of Disease in X-Linked Carriers of Chronic Granulomatous Disease. J Clin Immunol. 2013;33(8):1276-84.
Holland SM. Chronic Granulomatous Disease. Clin Rev Allergy Immunol. 2010;38(1):3-10.
Marciano BE, Zerbe CS, Falcone EL, Ding L, DeRavin SS, Daub J, et al. X-linked carriers of chronic granulomatous disease: Illness, lyonization, and stability. J Allergy Clin Immunol. 2018;141(1):365-71.
Watkins CE, Litchfield J, Song E, Jaishankar GB, Misra N, Holla N, et al. Chronic granulomatous disease, the McLeod phenotype and the contiguous gene deletion syndrome-a review. Clin Mol Allergy. 2011;9(1):13.
Kurkchubasche AG, Panepinto JA, Tracy TF, Thurman GW, Ambruso DR. Clinical features of a human Rac2 mutation: A complex neutrophil dysfunction disease. J Pediatr. 2001;139(1):141-7.
Accetta D, Syverson G, Bonacci B, Reddy S, Bengtson C, Surfus J, et al. Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. J Allergy Clin Immunol. 2011;127(2):535-8. e2.
Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci. 2000;97(9):4654.
Zielonka J, Hardy M, Michalski R, Sikora A, Zielonka M, Cheng G, et al. Recent Developments in the Probes and Assays for Measurement of the Activity of NADPH Oxidases. Cell Biochem Biophys. 2017;75(3):335-49.
Saleem N, Ahmed TA, Bashir M. Chronic granulomatous disease. J Pak Med Assoc. 2016;66(1):97-100.
Ochs HD, Igo RP. The NBT slide test: A simple screening method for detecting chronic granulomatous disease and female carriers. J Pediatr. 1973;83(1):77-82.
Milligan KL, Mann D, Rump A, Anderson VL, Hsu AP, Kuhns DB, et al. Complete Myeloperoxidase Deficiency: Beware the “False-Positive” Dihydrorhodamine Oxidation. J Pediatr. 2016;176:204-6.
Fleisher TA, Madkaikar M, Rosenzweig SD. Application of Flow Cytometry in the Evaluation of Primary Immunodeficiencies. Indian J Pediatr. 2016;83(5):444-9.
El Hawary R, Meshaal S, Deswarte C, Galal N, Abdelkawy M, Alkady R, et al. Role of Flow Cytometry in the Diagnosis of Chronic Granulomatous Disease: the Egyptian Experience. J Clin Immunol. 2016;36(6):610-8.
Vowells SJ, Fleisher TA, Sekhsaria S, Alling DW, Maguire TE, Malech HL. Genotype-dependent variability in flow cytometric evaluation of reduced nicotinamide adenine dinucleotide phosphate oxidase function in patients with chronic granulomatous disease. J Pediatr. 1996;128(1):104-7.
Mauch L, Lun A, O’Gorman MRG, Harris JS, Schulze I, Zychlinsky A, et al. Chronic Granulomatous Disease (CGD) and Complete Myeloperoxidase Deficiency Both Yield Strongly Reduced Dihydrorhodamine 123 Test Signals but Can Be Easily Discerned in Routine Testing for CGD. Clin Chem. 2007;53(5):890-6.
Roos D, de Boer M. Molecular diagnosis of chronic granulomatous disease. Clin Exp Immunol. 2014;175(2):139-49.