2022, Number 2
<< Back Next >>
Acta de Otorrinolaringología CCC 2022; 50 (2)
Development of a Movil App for the Preoperative Evaluation of Sinus CT Scan: One Step Towards Artificial Intelligence
Ospina J, Forigua DC, Hernández CA, Ayobi MN, Correa GT, Peñaranda A, Janjua A
Language: Spanish
References: 15
Page: 124-132
PDF size: 776.01 Kb.
ABSTRACT
Introduction: The recent technology revolution that we have experienced has generated
extensive interest in the use of artificial intelligence (AI) in the development
of various systems and solutions in medicine. In the field of Otorhinolaryngology,
we are seeing the first efforts to take advantage of this flourishing area.
Objective:
We sought to describe the development process of a mobile app created through a
collaborative effort between ENT surgeons and biomedical engineers. This app has
the intention to optimize the preoperative evaluation of paranasal sinus tomography
(CT) to improve safety and outcomes in Endoscopic Sinus Surgery (ESS).
Methods:
The development of the app followed the prioritization method for MoSCoW specifications.
We used the information collected from surveys of 29 Rhinology experts
from different parts of the world, who evaluated anatomical variants on sinus CT scans. Two regression models were used to predict difficulty and risk using statistical
learning.
Conclusion: Via statistical modelling, we have developed a user-friendly
tool that will ideally help surgeons assess the risk and difficulty of ESS based on
the pre-operative CT scan of the sinuses. This is an exercise that demonstrates the
efficacy of the collaborative efforts between surgeons and engineers to leverage AI
tools and promote better solutions for our patients.
REFERENCES
Jotterand F, Bosco C. Artificial Intelligence in Medicine: A Sword of Damocles? J Med Syst. 2022;46(1):1-5. doi: 10.1007/s10916-021-01796-7
Crowson MG, Ranisau J, Eskander A, et al. A contemporaryreview of machine learning in otolaryngology–head and necksurgery. Laryngoscope. 2020;130(1):45-51. doi: 10.1002/lary.27850
Dapre.presidencia.gov.co. Marco ético para la inteligenciaartificial en Colombia [Internet]. Gobierno de Colombia. 2021[citado falta la fecha]. Disponible en: https://dapre.presidencia.gov.co/TD/MARCO-ETICO-PARA-LA-INTELIGENCIA-ARTIFICIAL-EN-COLOMBIA-2021.pdf
Chowdhury NI, Smith TL, Chandra RK TJ. Automatedclassification of osteomeatal complex inflammation on CT using convolutional neural networks. Int Forum Allergy Rhinol.2019;176(5):139-148. doi: 10.1002/alr.22196.
Liu GS, Bs AY, Ba DK, et al. Deep learning classificationof inverted papilloma malignant transformation using 3Dconvolutional neural networks and magnetic resonanceimaging. 2022;(September 2021):1-9. doi: 10.1002/alr.22958
Spielman DB, Gudis DA. How I Do It PreoperativeSinus Computed Tomography Scan Review Checklist.2020;(December):706-708. doi: 10.1002/lary.28444
Kagen S, Garland A. Asthma and Allergy Mobile Apps in 2018.Curr Allergy Asthma Rep. 2019;19(1):6. doi: 10.1007/s11882-019-0840-z
Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, BironPV, et al. HL7 Clinical Document Architecture, Release 2. JAm Med Inform Assoc. 2006;13(1):30-9. doi: 10.1197/jamia.M1888
Goossen W, Langford LH. Exchanging care records usingHL7 V3 care provision messages. J Am Med Inform Assoc.2014;21(e2):e363-8. doi: 10.1136/amiajnl-2013-002264
Dolin RH, Alschuler L, Beebe C, Biron PV, Boyer SL, Essin D, etal. The HL7 Clinical Document Architecture. J Am Med InformAssoc. 2001;8(6):552-69. doi: 10.1136/jamia.2001.0080552
Haynes AB, Weiser TG, Berry WR, Lipsitz SR. A SurgicalSafety Checklist to Reduce Morbidity and Mortality in a GlobalPopulation. N Engl J Med. 2010;360(5):491-499. doi: 10.1056/NEJMsa0810119
Tewfik MA, Wormald PJ. Ten Pearls for Safe Endoscopic SinusSurgery. Otolaryngol Clin North Am. 2010;43(4):933-944. doi:10.1016/j.otc.2010.04.017
O’Brien WT, Hamelin S, Weitzel EK. The preoperative sinusCT: Avoiding a “cLOSE” call with surgical complications.Radiology. 2016;281(1):10-21. doi: 10.1148/radiol.2016152230
García-Chabur MA, Peñaranda D, Pinzón M, et al. Lista dechequeo preoperatorio para la cirugía endoscópica de hipófisisPreoperative checklist for endoscopic pituitary surgery. ActaOtorrinolaringol Cirugía Cabeza y Cuello. 2020:322-330. doi:10.37076/acorlv48i4.562
Liquid-state.com. Digital Health App Trends to Consider for2018 [Internet]. Digital Health Trends. 2018 Disponible en:https://liquid-state.com/digital-health-app-trends-2018/