2022, Number 1
<< Back Next >>
Acta de Otorrinolaringología CCC 2022; 50 (1)
Risk of malignancy evaluation through data mining technic in patients with thyroid nodules with cytology study Bethesda IV
Baquero GRL, Diazgranados GE, León GE, Zambrano JF, Calixto GÁE, Rey AF, Palencia CA, Castañeda JF, León GE
Language: Spanish
References: 25
Page: 36-44
PDF size: 299.07 Kb.
ABSTRACT
Introduction: In the health field, each decision represents data, and data mining
techniques have begun to be a promising methodology for the analysis of this
information, especially in the design of predictive models.
Methods: Analytical observational
study; patients older than 15 years with a report of Bethesda IV after a
fine needle aspiration biopsy that undergoing surgical management at the Hospital
de San José in Bogotá. The data collected from those patients were included in three
groups: sociodemographic-clinical information, cytology findings, and ultrasound
reports. Analysis was performed using three technics: Naive Bayes, decision trees,
and neural networks. Weka tool version 3.8.2 was used.
Results: 195 patients out of
427, had a thyroid carcinoma pathology (45.6%). Better results were evidenced using
cross-validation (10 fold) compared with a partition (66%), the Bayes technique had
better results of correct classification (91.1%), than the tree technique (87.8%) and
neural network (88.2%).
Conclusions: The use of the Naive Bayes technique shows
an important accuracy to determine the prediction of risk of malignancy in patients
with a Bethesda IV cytological study, which would allow an adequate guide to the
surgical management of patients.
REFERENCES
Kumar R, Shaikh B, Chandio A, Ahmed J. Role of healthmanagement information system in disease reporting at a ruraldistrict of Sindh. Pak J Public Health. 2012;2(2):10-2.
Castro M. Las técnicas de modelización estadística en lainvestigación educativa: minería de datos, modelos deecuaciones estructurales y modelos jerárquicos lineales. RevEsp Pedag. 2012;251:131-48.
Stilou S, Bamidis PD, Maglaveras N, Pappas C. Miningassociation rules from clinical databases: An intelligentdiagnostic process in healthcare. Stud Health Technol Inform.2001;84(2):1399-403.
Salazar J, Espinoza C, Mindiola A, Bermúdez V. Data miningand endocrine diseases: A new way to classify? Arch Med Res.2018;49(3):213-5. doi: 10.1016/j.arcmed.2018.08.005.
Kim T, Zabaneh F, Holmes J, Disrude L, Price M, Gentry L.A practical data mining method to link hospital microbiologyand an infection control database. Am J Infect Control.2008;36(3):S18-S20. doi: 10.1016/j.ajic.2007.05.010.
Izzo CM, Prescott J, Peden A, Brown JF, Valencia F. Use ofa data mining system to improve the process of public healthreporting in a large teaching facility. Am J Infect Control.2008;36(5):E186. doi: 10.1016/j.ajic.2008.04.216.
Michie D, Spiegelhalter DJ, Taylor CC, Campbell J (editores).Machine learning, neural and statistical classification. UpperSaddle River, NJ, EE. UU.: Ellis Horwood. 1994.
Koh HC, Tan G. Data mining applications in healthcare. JHealthc Inf Manag. 2005;19(2):64-72.
Kotsiantis S, Pierrakeas C, Pintelas P. Preventing studentdropout in distance learning using machine learning techniques.Springer. 2003. p. 267-74.
Schreiner AM, Yang GC. Adenomatoid nodules are the maincause for discrepant histology in 234 thyroid fine-needleaspirates reported as follicular neoplasm. Diagn Cytopathol.2012;40(5):375-9. doi: 10.1002/dc.21499.
Conzo G, Calò PG, Gambardella C, Tartaglia E, Mauriello C,Della Pietra C, et al. Controversies in the surgical managementof thyroid follicular neoplasms. Retrospective analysis of721 patients. Int J Surg. 2014;12(1):S29-34. doi: 10.1016/j.ijsu.2014.05.013.
Herrera F, Redondo K, Osorio C, Grice J, Fernández A. Utilidadde la citología obtenida mediante aspiración con aguja fina en eldiagnóstico de las neoplasias foliculares de la glándula tiroidesen la E.S.E Hospital Universitario del Caribe: un estudioretrospectivo. Rev Colomb Cir. 2015;30:12-7. doi: 10.30944/issn.2011-7582.
Jo VY, Stelow EB, Dustin SM, Hanley KZ. Malignancy riskfor fine-needle aspiration of thyroid lesions according tothe Bethesda system for reporting thyroid cytopathology.Am J Clin Pathol. 2010;134(3):450-6. doi: 10.1309/AJCP5N4MTHPAFXFB.
Osorio C, Fernández A, Herrera K, Marrugo Á, Ensuncho C,Redondo K, et al. Sensibilidad y especificidad de la citologíaobtenida mediante aspiración con aguja fina en el diagnósticode las neoplasias foliculares de la glándula tiroides: un estudioprospectivo. Rev Esp Patol. 2016;49(3):144-50. doi: 10.1016/j.patol.2016.01.005.
Kuru B, Kefeli M. Risk factors associated with malignancy andwith triage to surgery in thyroid nodules classified as Bethesdacategory IV (FN/SFN). Diagn Cytopathol. 2018;46(6):489-94.doi: 10.1002/dc.23923.
Lee SH, Baek JS, Lee JY, Lim JA, Cho SY, Lee TH, et al.Predictive factors of malignancy in thyroid nodules with acytological diagnosis of follicular neoplasm. Endocr Pathol.2013;24(4):177-83. doi: 10.1007/s12022-013-9263-x.
Yassa L, Cibas ES, Benson CB, Frates MC, Doubilet PM,Gawande AA, et al. Long-term assessment of a multidisciplinaryapproach to thyroid nodule diagnostic evaluation. Cancer.2007;111(6):508-16. doi: 10.1002/cncr.23116.
Guth S, Theune U, Aberle J, Galach A, Bamberger CM.Very high prevalence of thyroid nodules detected by highfrequency (13 MHz) ultrasound examination. Eur J Clin Invest.2009;39(8):699-706. doi: 10.1111/j.1365-2362.2009.02162.
Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, HegedüsL, et al. American Asociation of Clinical Endocrinologists,American College of Endocrinology, and Associazione MediciEndocrinologi Medical guidelines for clinical practice for thediagnosis and management of thyroid nodules--2016 update.Endocr Pract. 2016;22(5):622-39. doi: 10.4158/EP161208.GL.
Abdul-Jabar HB, Lynn J. The surgical management ofthyroid cancer. Nucl Med Commun. 2004;25(9):869-72. doi:10.1097/00006231-200409000-00002.
Rodríguez González H, Pava Marín R, Castaño HerreraLF, Valencia García LV, Pava Ripoll A. Evaluación de laprecisión diagnóstica de la punción aspiración con aguja finaen pacientes con nódulo tiroideo. Biosalud. 2017;16(1):19-29.doi: 10.17151/biosa.2017.16.1.3.
Mejía M, Rivera Delgado M, Bonilla J, Melo M, Rojas GarcíaW. Factores asociados a histopatología final benigna enpacientes con biopsia por aspiración con aguja fina clasificadoscomo Bethesda en IV-V-VI en Hospital de San José. Bogotá:Fundación Universitaria de Ciencias de la Salud. 2017.
Park SY, Hahn SY, Shin JH, Ko EY, Oh YL. The diagnosticperformance of thyroid US in each category of the Bethesdasystem for reporting thyroid cytopathology. PLoS One.2016;11(6):e0155898. doi: 10.1371/journal.pone.0155898.
Razia S, Narasinga MR. Machine learning techniques forthyroid disease diagnosis - A review. Indian J Sci Technol.2016;9(28):1-9. doi: 10.17485/ijst/2016/v9i28/93705.
Boas FE, Liu LY, Kamaya A, Desser TS, Rubin DL. Estimatingthe probability of malignancy of thyroid nodules using adjustednaïve Bayes. 2012. Disponible en: http://www.edboas.com/calc/thyroid.pdf