2004, Number 3
<< Back Next >>
Arch Cardiol Mex 2004; 74 (3)
Positron emission tomography (PET): A useful tool for the assessment of cardiac metabolism
Alexánderson E, Gómez-Martín D, Benito I, Ruíz-Ramírez L, Ricalde A, Meave A
Language: Spanish
References: 33
Page: 220-228
PDF size: 124.43 Kb.
ABSTRACT
Under normal conditions, myocardial metabolism is based on the oxidation of fatty acids and in a lesser extent carbohydrates. Cardiac function depends upon an adequate supplement of adenosine triphosphate (ATP) by these substrates. However, the main source of energy is susceptible to change upon a various physiologic (exercise) as well as pathologic (ischemia-reperfusion) conditions. Recently, carnitine has gained attention as a modulator of fatty acids and carbohydrates metabolism by means of modifying intramitochondrial Acetyl-CoA/CoA ratio. Disturbances in fatty acids and carbohydrates metabolism in the myocardium have been associated with cardiovascular diseases (chronic ischemic disease, ventricular hypertrophy and dilated cardiomyopathy). The evaluation of cardiac metabolism attains great value regarding diagnosis, treatment and prognosis of these diseases. Currently, positron emission tomography (PET) is one of the preferred methods to evaluate cardiac energy metabolism in clinical practice. In PET images the tracers most commonly used are 11C-palmitate, 11C-acetate y 18Fluoro-2-deoxyglucose (FDG), the first two are employed to assess fatty acids oxidation and FDG is used to evaluate carbohydrates metabolism.
REFERENCES
Calvani M, Reda E, Arrigoni-Martelli E: Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol 2000; 95: 75-83.
Carvajal K, Moreno-Sánchez R: Heart Metabolic Disturbances in Cardiovascular Diseases. Arch Med Res 2003; 34: 89-99.
Neely J, Morgan H: Relationship between carbohydrate and lipid metabolism and energy balance of the heart. Rev Physiol 1974;36: 413-59.
Taegtmeyer H: Energy metabolism of the heart : from basic concepts to clinical applications. Curr Probl Cardiol 1994; 19: 59-113.
Depre C, Vanoverschelde JL, Taegtmeyer H: Glucose for the heart. Circulation 1999; 99: 578-88.
McGarry JD, Millis SE, Long CS, Foster DW: Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyl-transferase 1 in animal and human tissues. Biochem J 1983; 214: 21-8.
De Vries Y, Arvidson DN, Waterham HR, Cregg JM, Woldegiogis G: Functional characterization of mitochondrial carnitine palmitoyl-transferases I and II expressed in the yeast Pichia pastors. Biochemistry 1997; 36: 5285-92.
Stanley WC, Lopaschuk GD, Hall JL, McCormack JG: Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 1997; 33: 243-57.
Lysiak W, Lilly K, DiLisa F, Toth PP, Bieber LL: Quantification of the effect of L-carnitine on the levels of acid-soluble short-chain acyl CoA and CoA in rat heart and liver mitochondria. J Biol Chem 1988; 263: 1511-6.
Hoppel C: The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis 2003; 41 (4 Suppl 5): S4-S12.
Randle PJ, Priestman DA, Mistry S, Halsall A: Mechanisms modifying glucose oxidation in diabetes mellitus. Diabetologia 1994; 37: S155-S161.
Bartelds B, Gratama JWC, Knoester H, Takens J, Smid GB, Aarnoudse JG, et al: Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am J Physiol 1998; 274: H1962-H1969.
Rumsey W, Abbot B, Bertelsen D, Msallamaci K, Nelson D, Erecinska M: Adaptation to hypoxia alters energy metabolism in rat heart. Am J Physiol 1999; 276: H7-H80.
Wambolt RB, Henning SL, English DR, Dyachkova Y, Lopaschuk GD, Allard MF: Glucose utilization and glycogen turnover accelerated in hypertrophied rat hearts during severe low-flow ischemia. J Moll Cell Cardiol 1999; 31: 493-502.
Renstrom B, Liedtke AJ, Nellis SH: Mechanism of substrate preference for oxidative metabolism during early myocardial reperfusion. Am J Physiol 1990; 259: H317-H323.
Vanoverschelde JL, Janier MF, Bakke JE, Marshall DR, Bergmann SR: Rate of glycolisis during ischemia determines extent of ischemic injury and functional recovery after reperfusion. Am J Physiol 1994; 267: H1785-H1794.
Lamers JMJ: Amphiphilic interactions of long-chain fatty acylcarnitines with membranes: potential involvement in ischemic injury. En: DeJong JW, Ferrari R (eds): The Carnitine System. Kluwer Acad Publishers, Dordrecht, The Netherlands, pp 83-100.
Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD: High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5’-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 1995; 270: 17513-20.
Sambandam N, Lopaschuk GD: AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 2003; 42: 238-56.
Lopaschuk GD: Regulation of carbohydrate metabolism in ischemia and reperfusion. Am Heart J 2000; 139: S115-9.
Lopaschuk GD: Advantages and limitations of experimental techniques used to measure cardiac energy metabolism. J Nucl Cardiol 1997; 4: 316-28.
Visser FC: Imaging of cardiac metabolism using radiolabelled glucose, fatty acids and acetate. Coron Artery Dis 2001; 12 (Suppl 1): S12-8.
Klein LJ, Visser FC, Knaapen P, Peters JH, Teule GJ, Visser CA, Lammertsma AA: Carbon-11 acetate as a tracer of myocardial oxygen consumption. Eur J Nucl Med 2001; 28: 651-8.
Czernin J, Porenta G, Brunken RC, Krivokapich J, Chen K, Bennett R, et al: Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction. Circulation 1993; 88: 884-95.
Katoh C, Ruotsalainen U, Laine H, Alenius S, Iida H, Nuutila P, et al: Iterative reconstruction based on median root prior in quantification of myocardial blood flow and oxygen metabolism. J Nucl Med 1999; 40: 862-7.
Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR: Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C] acetate and dynamic positron emission tomography. Circulation 1989; 80: 863-72.
Vanoverschelde JL, Melin JA , Bol A, Vanbutsele R, Cogneau M, Labar D, et al: Regional oxidative metabolism in patients after recovery from reperfused anterior infarction. Relation to regional blood flow an glucose uptake. Circulation 1992; 82: 9-21.
Bengel FM, Permanetter B, Ungerer M, Nekolla S, Schwaiger M: Non-invasive estimation of myocardial efficiency using positron emission tomography and carbon –11 acetate: comparison between the normal and failing human heart. Eur J Nucl Med 2000;27:319-26.
Maki MT, Haaparanta M, Nuutila P, Oikonen V, Luotolahti M, Eskola O, et al: Free fatty acid uptake in the myocardium and skeletal muscle using fluorine-18 fluoro-6-thia-heptadecanoic acid. J Nucl Med 1998; 39: 1320-7.
Schelbert HR, Henze E, Schon HR, Keen R, Hansen H, Selin C, et al: Carbon –11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. III. In vivo demonstration of the effects of substrate availability on myocardial metabolism. Am Heart J 1983;105:492-504.
Chan SY, Brunken RC, Phelps ME, Schelbert HR: Use of the metabolic tracer carbon-11-acetate for evaluation of regional myocardial perfusion. J Nucl Med 1991; 32: 665-72.
Brown M, Marshall DR, Sobel BE, Bergmann SR: Delineation of myocardial oxygen utilization with carbon-11-labelled acetate. Circulation 1987; 3: 687-96.
Yazaki Y, Isobe M, Takahashi W, Kitabayashi H, Nishiyama O, Sekiguchi M, Takemura T: Assessment of myocardial fatty acid metabolic abnormalities in patients with idiopathic dilated cardiomyopathy using 123 I BMIPP SPECT: correlation with clinicopathological findings and clinical course. Heart 1999; 81:153-9.