2021, Number 1
<< Back Next >>
Rev Ciencias Médicas 2021; 25 (1)
Coexistence of facial dysmorphia and congenital malformations in human fetuses
Zaldivar GI, Linares GEM, Licourt OD, Díaz PR, León GM
Language: Spanish
References: 15
Page: 1-11
PDF size: 340.93 Kb.
ABSTRACT
Introduction:
facial dysmorphia is a topic approached from multiple angles. The coexistence of these and other disorders of the human body can be explained by the processes that occur during the development of the embryo.
Objective:
to determine the relationship between facial dysmorphia and congenital malformations present in the system of organs in human fetuses.
Methods:
an analytical, cross-sectional, observational research was carried out on 42 human fetuses resulting from pregnancy interruptions. During the autopsy, facial structures were measured. Facial profile, symmetry, existence of facial hypoplasias and congenital malformations in different system of organs were considered.
Results:
66,7 % of male fetuses were observed, average maternal age was 29,3 ± 7,5 years. Dysmorphia of the facial profile (73,8 %), the frontal region (57,1 %) and the jaw (54,7 %) were more frequent. Only cardiovascular malformations showed a positive, significant correlation with signs of facial dysmorphia (p=0,006; R=0,414).
Conclusions:
facial dysmorphia in human fetuses was related to malformations of the cardiovascular system, which could be useful in the early diagnosis of congenital heart defects.
REFERENCES
Yadav S, Malla B, Srivastava A. Anthropometric Study of Philtrum (Face) and other nasal parameters in Nepal. Int. J. Mod. Anthrop.[Internet]. 2018 [citado 30/06/2020]; 2(11): p. 163-180. Disponible en: Disponible en: https://www.ajol.info/index.php/ijma/article/view/177213
Ornoy A. Craniofacial malformations and their association with brain development: the importance of a multidisciplinary approach for treatment. Odontology. [Internet]. 2020 Jan[ citado 30/06/2020]; 108(1): p. 1-15. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/31172336/
GOLDSTEIN I, TAMIR A, WEINER Z, JAKOBI P. Dimensions of the fetal facial profile i n normal pregnancy. Ultrasound Obstet Gynecol. [Internet]. 2010 [citado 30/06/2020]; 35: p. 191-194. Disponible en: Disponible en: https://obgyn.onlinelibrary.wiley.com/doi/pdf/10.1002/uog.7441
Côrte Real I, Braga A, Nogueira R, Felino A, Valente F, Vaz P. Growth pattern of the philtrum in cases of normal and pathological fetal development. Rev Port Estomatologia, Medicina Dentária e Cirurgia Maxilofacial [Internet]. 2016[ citado 30/06/2020]; 57(4): p. 223-228. Disponible en: Disponible en: https://www.elsevier.es/en-revista-revista-portuguesa-estomatologia-medicina-dentaria-330-articulo-growth-pattern-philtrum-in-cases-S164628901630036X
González Espangler L. Modelo cefalométrico predictivo para el brote de los terceros molares. Tesis de doctorado.. Universidad De Ciencias Médicas De Santiago De Cuba, Departamento De Ortodoncia.2019. Disponible en: http://tesis.sld.cu/index.php?P=FullRecord&ID=713
Estrada Padilla SA, Corona Rivera JR, Sánchez Zubieta F, Bobadilla Morales L, Corona Rivera A. Variantes fenotípicas menores en pacientes con leucemia linfoblástica aguda del occidente de México. An Pediatr. [Internet]. 2015 [citado 30/06/2020]; 82(2): p. 75-82. Disponible en: Disponible en: https://www.sciencedirect.com/science/article/pii/S1695403313004967
Mohlina S, Kunttas E, Persson C. Maintaining multipotent trunk neural crest stem cells as self-renewing crestospheres. Developmental Biology.[Internet]. 2019 Mar[citado 30/06/2020]; 447: p. 137-146. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/30664880/
Vandamme N, Berx G. From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cell Mol Life Sci. [Internet]. 2019 May [citado 30/06/2020]; 76(10): p. 1919-1934. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/30830237/
Giniunaite R, Baker R, Kulesa P, Maini P. Modelling collective c ell migration: n eural c rest as a model paradigm. Journal of Mathematical Biology. [Internet]. 2019 [citado 30/06/2020]; 80: p. 481-504. Disponible en: Disponible en: https://link.springer.com/article/10.1007/s00285-019-01436-2
Nakayama N, Pothiawala A, Lee J. Human pluripotent stem cell-derived chondroprogenitors for cartilage tissue engineering. Cell Mol Life Sci. [Internet]. 2020 Jul[ citado 30/06/2020];77(13): p. 2543-2563. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/31915836/
Arai H, Sato F. Metalloprotease-Dependent Attenuation of BMP Signaling Restricts Cardiac Neural Crest Cell Fate. Cell Rep. [Internet]. 2019 [citado 30/06/2020]; 29(3): p. 603-616. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/31618630/ .
Etchevers H, Dupin E, Le Douarin N. The importance and impact of discoveries about neural crest fates. Cornell University [Internet]. 2018 [citado 30/06/2020];: p. Disponible en: Disponible en: https://arxiv.org/abs/1808.00204
Tang W, Martik M, Li Y, Bronner M. Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. eLife. [ Internet]. 2019 [citado 30/06/2020 ]; 8: p. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721792/
Firulli B, Firulli A. Partially Penetrant Cardiac Neural Crest Defects in Hand1 Phosphomutant Mice: Dimer Choice That Is Not So Critical. Pediatric Cardiology. [Internet]. 2019 [citado 30/06/2020]; 40(7): p. 1339-1344. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/31338559/
Chacon J, Rogers C. Early expression of Tubulin Beta-III in avian cranial neural crest cells. Gene Expression Patterns. [Internet]. 2019 [citado 30/06/2020]; 34: p. Disponible en: Disponible en: https://www.sciencedirect.com/science/article/pii/S1567133X19300675