2001, Number 1
<< Back
Microbiología 2001; 43 (1)
Genetic regulation in response to caloric stress in Escherichia coli.
Ramírez SJ, Solís GG, Gómez EC
Language: Spanish
References: 73
Page: 51-63
PDF size: 240.33 Kb.
ABSTRACT
Cells of almost any organism respond to a sudden up-shift of temperature and to several other stress conditions, by a transient increase in the cellular concentration of a set of proteins, the heat-shock proteins (HSPs). The main HSPs, chaperones and proteases, are constituents of the cellular machinery of protein folding, translocation, repair and degradation. The bacteria
Escherichia coli has been a paradigm regarding heat shock gene expression in prokaryotes. In this bacterium, the expression of the HSPs is regulated at the transcriptional level. The approximately 40 genes that encode the HSPs define the heat-shock stimulon. Most of these genes, including the main chaperone and protease genes, are under the positive control of
σ32, encoded by
rpoH, while approximately 10 genes, including
rpoH and
rpoE, are regulated by
σE, encoded by
rpoE. The cytoplasmic response to heat is regulated by
σ32, while that of the periplasm is regulated by
σE. The expression of both regulons is interconnected, since
σE regulates the transcription of
rpoH at high temperatures. The ac tivity of these s factors, under non-stress and stress conditions, depends upon negative and positive regulatory mechanisms acting at different levels: transcription, translation, half-life and activity of the factors. Models for the regulation of the cytoplasmic and periplasmic response to heat in
E. coli are presented.
REFERENCES
Ades, S. E., L. E. Connolly, B. M. Alba and C. A. Gross. 1999. The Escherichia coli sE-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-s factor. Genes Dev. 13:2449-2461.
Arsene, F., T. Tomoyasu, A. Mogk, C. Schirra, A. Schulze -Specking and B. Bukau. 1999. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma 32. J. Bacteriol. 181:3552-61.
Blaszczak, A., C. Georgopoulos, and K. Liberek. 1999. On the mechanism of FtsH-dependent degradation of the s32 transcriptional regulator of Escherichia coli and the role of the DnaK chaperone machine. Mol. Microbiol. 31:157-166.
Blumenthal, R. M., D. W. Borst, and R. G. Matthews. 1996. Experimental analysis of global gene regulation in Escherichia coli. Progress Nucl. Acid. Res. and Mol. Biol. 55:1-86.
Bukau, B. 1993. Regulation of the Escherichia coli heat-shock response. Mol. Microbiol. 9:671-680.
Camacho-Carranza, R., J. Membrillo-Hernández, J. Ramírez-Santos, J. Castro-Dorantes, V. Chagoya de Sánchez and M. C. Gómez-Eichelmann. 1995. Topoisomerase activity during the heat-shock response in Escherichia coli K-12. J. Bacteriol. 177:3619-3622.
Chuang, S. E., and F. R. Blattner, 1993. Characterization of twenty-six new heat shock genes of Escherichia coli. J. Bacteriol. 175:5242-5252.
Connolly, L., A. De las Peñas, B. M. Alba, and C. A. Gross. 1997. The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. Genes Dev. 11:2012-2021.
Cooper, S. and T. Ruettinger. 1975. A temperature sensitive nonsense mutation affecting the synthesis of a major protein of Escherichai coli. Mol. Gen. Genet. 139:167-176.
Craig, E. A. and C. A. Gross. 1991. Is hsp70 the cellular thermometer? Trends Biochem. Sci. 16:135-140.
De las Peñas, A., L. Connolly and C. A. Gross. 1997. The sE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of sE. Mol. Microbiol. 24:373-385.
Erickson, J. W. and C. A. Gross. 1989. Identification of the sE subunit of Escherichia coli RNA polymerase: a second alternate s factor involved in hightemperature gene expression. Genes Dev. 3:1462-1471.
Erickson, J. W., V. Vaughn, W. A. Walter, F. C. Neidhardt, and C. A. Gross. 1987. Regulation of the promo ters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev. 1:419-432.
Gómez Eichelmann, M. C. and R. Camacho Carranza. 1995. Superenrollamiento del DNA y topoisomerasas de Escherichia coli. Rev. Lat.-Amer. Microbiol. 37:291-304.
Gómez-Eichelmann, M. C. and C. H. Helmstetter. 1999. Transcription level of operon ftsYEX and activity of promoter P1 of rpoH during the cell cycle in Escherichia coli. J. Basic. Microbiol. 39:237-242.
Gottesman, S. 1999. Regulation by proteolysis: developmental switches. Curr. Opin. Microbiol. 2:142-147.
Gottesman, M. E. and W. A. Hendrickson. 2000. Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Curr. Opin. Microbiol. 3:197-202.
Gross, C. A. 1996. Function and regulation of the heat shock proteins, pp.1382-1399. In F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. Rezniko ff, M. Riley, M. Schaechter and H. E. Umbarger (Eds). Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology. Washington D.C.
Grossman, A. D., J. W. Erickson and C. A. Gross. 1984. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383-390.
Hecker, M., W. Schumann and U. Volker. 1996. Heatshock and general stress response in Bacillus subtilis. Mol. Microbiol. 19:417-428.
Horwich, A. L., E. U. Weber-Ban and D. Finley. 1999. Chaperone rings in protein folding and degradation. Proc. Natl. Acad. Sci. USA 96:11033-11040.
Hughes, K. T. and K. Mathee. 1998. The anti-sigma factors. Annu. Rev. Microbiol. 52:231-286.
Kallipolitis, B. H. and P. Valentin-Hansen. 1998. Transcription of rpoH, encoding the Escherichia coli heat-shock regulator s32, is negatively controlled by the cAMP-CRP/CytR nucleoprotein complex. Mol. Microbiol. 29:1091-1099.
Krueger, J. H. and G. C. Walker. 1984. groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+-dependent fashion. Proc. Natl. Acad. Sci. USA 81:1499-1503.
Landick, R., V. Vaughn, E. T. Lau, R. A. VanBogelen, J. W. Erickson, and F. C. Neidhardt. 1984. Nucleotide sequence of the heat shock regulatory gene of E. coli suggests its protein product may be a transcription factor. Cell 38:175-182.
Lee-Rivera, I. y Gómez-Eichelmann, M. C. 1994. Escherichia coli cells with mutations in the gene for adenylate cyclase (cya) exhibit a heat shock response. FEMS Microbiol. Lett. 121:35-38
Lemaux, P. G., S. L. Heredeen, P. L. Bloch and F. C. Neidhardt. 1978. Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts. Cell 13:427-434.
Liberek, K., J. Marszalek, D. Ang, C. Georgopoulos, and M. Zylicz. 1991. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA. 88:2874-2878.
Lipinska, B., Zylicz, M. and C. Georgopoulos. 1990. The htrA (degP) protein, essential for Escherichia coli growth at high temperatures, is an endopeptidase. J. Bacteriol. 172:1791-1797.
López-Sánchez, F., J. Ramírez-Santos and M. C. Gómez-Eichelmann. 1997. In vivo effect of DNA relaxation on the transcription of gene rpoH in Escherichia coli. Biochim. Biophys. Acta. 1353:79-83.
Mayhew, M., A. C. R. Da Silva, J. Martin, H. Erdjument-Bromage, P. Tempst, and F. U. Hartl. 1996. Protein folding in the central cavity of the GroELGroES chaperonin complex. Nature 379:420-426.
McCarty, J. S., S. Rudiger, H. J. Schonfeld, J. Schneider-Mergener, K. Nakahigashi, T. Yura and B. Bukau. 1996. Regulatory region C of E. coli heat shock transcription factor, σ32, constitutes a DnaK binding site and is conserved among eubacteria. J. Mol. Biol. 256:829-837.
McCarty, J. S., and G. C. Walker. 1991. DnaK as a thermometer: Threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc. Natl. Acad. Sci. USA. 88:9513-9517.
Mecsas, J., P. E. Rouviere, J. W. Erickson, T. J. Donohue, and C. A. Gross. 1993. The activity of sE, an Escherichia coli heat-inducible s-factor, is modulated by expression of outer membrane proteins. Genes Dev. 7:2618-2628.
Mejía R., M. C. Gómez-Eichelmann and M. S. Fernández. 1995. Membrane fluidity of Escherichia coli during heat-shock. Biochim. Biophys. Acta. 1239:195-200.
Membrillo-Hernández, J., A. Nuñéz-de la Mora, T. del Río-Albrechtsen, R. Camacho-Carranza and M. C. Gómez-Eichelmann. 1995. Thermally-induced cell lysis in Escherichia coli K12. J. Basic Microbiol. 35:41-46.
Messer, W. and C. Weigel. 1997. DnaA initiator - also a transcription factor. Mol. Microbiol. 24:1-6.
Missiakas, D., J. M. Betton, and S. Raina. 1996. New components of protein folding in the extra-cytoplasmic compartments of Escherichai coli: SurA, FkpA, and Skp/OmpH. Mol. Microbiol. 21:871-884.
Missiakas, D., M. P. Mayer, M. Lemaire, C. Georgopoulos and S. Raina. 1997. Modulation of the Escherichia coli σE (RpoE) heat-shock transcriptionfactor activity by the RseA, RseB and RseC proteins. Mol. Microbiol. 24:355-371.
Missiakas, D. and S. Raina. 1997. Protein folding in the bacterial periplasm. J. Bacteriol. 179:2465-2471.
Missiakas, M. and S. Raina. 1998. The extracytoplasmic function sigma factors: role and regulation. Mol. Microbiol. 28:1059-1066.
Missiakas, D., S. Raina and C. Georgopoulos. 1996. Heat shock regulation, pp.481-501. In E. C. C. Lin and A. S. Lynch (Eds). Regulation of Gene Expression in Escherichia coli. R. G. Landes Company, Austin, TX.
Mizusawa, S. and S. Gottesman. 1983. Protein degradation in Escherichia coli: The lon gene controls the stability of the SulA protein. Proc. Natl. Acad. Sci. USA 80:358-362.
Morita, M. T., Y. Tanaka, T. S. Kodama, Y. Kyogoku, H. Yanagi, and T. Yura. 1999. Translation induction of heat shock transcription factor σ32: evidence for a builtin RNA thermosensor. Genes Dev. 13:655-665.
Nagai, H., R. Yano, J. W. Erickson, and T. Yura. 1990. Trancriptional regulation of the heat shock regulatory gene rpoH in Escherichia coli: involvement of a novel catabolite-sensitive promoter. J. Bacteriol. 172:2710-2715.
Nagai, H., H. Yuzawa and T. Yura. 1991. Regulation of the heat shock response in E. coli: involvement of the positive and negative cis-acting elements in translational control of σ32 synthesis. Biochimie 73:1473-1479.
Nakahigashi, K., H. Yanagi, and T. Yura. 1998. Regulatory conservation and divergence of σ32 homologs from gram-negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens. J. Bacteriol. 180:2402-2408.
Narberhaus, F. 1999. Negative regulation of bacterial heat shock genes. Mol. Microbiol. 31:1-8.
Neidhardt, F. C. and R. A. Vanbogelen.1987. Heat shock response, pp.1334-1345. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter and H. E. Umbarger (Eds). Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology. Washington D.C.
Neumann, D. and L. Nover. 1991. Heat shock-induced changes of cell ultrastructure, pp.346-371. In L. Nover (Ed). Heat Shock Response. CRC Press. Boca Raton, Florida.
Nover, L. 1991. Inducers of HSP synthesis: heat shock and chemical stressors, pp.5-40. In L. Nover (Ed). Heat Shock Response. CRC Press. Boca Raton, Florida.
Oliver, D. B. 1996. Periplasm, pp.88-103. In F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. Reznikoff, M. Riley, M. Schaechter and H. E. Umbarger (Eds). Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology. Washington D.C.
Paek, K. H. and G. C. Walker. 1987. Escherichia coli dnaK null mutants are inviable at high temperature. J. Bacteriol. 169:283-290.
Parsell, D. A. and Lindquist, S. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27:437-496.
Raina, S., D. Missiakas, and C. Georgopoulos. 1995. The rpoE gene encoding the σE (s24) heat shock sigma factor of Escherichia coli. EMBO J. 14:1043-1055. 56. Ramírez-Santos, J., J. Collado-Vides, M. García-Varela, and M. C. Gómez-Eichelmann. 2001. Conserved regulatory elements of the promoter sequence of the gene rpoH of enteric bacteria. Nucleic Acids Res. 29:380-386.
Ramírez-Santos, J. and M. C. Gómez-Eichelmann. 1998. Identification of s32-like factors and ftsX-rpoH gene arrangements in enteric bacteria. Can. J. Microbiol. 44:565-568.
Richarme, G. and M. Kohiyama. 1993. Specificity of the Escherichia coli chaperone DnaK (70-kDa heat shock protein) for hydrophobic amino acids. J. Biol. Chem. 268:24074-24077.
Richmond, C. S., J. D. Glasner, R. Mau, H. Jin and F. R. Blattner. 1999. Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 27:3821- 3835.
Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DPN in Drosophila. Experientia 18:571-573.
Rouviere, P. E., A. De las Peñas, J. Mecsas, C. Z. Lu, K. E. Rudd, and C. A. Gross. 1995. rpoE, the gene encoding the second heat-shock sigma factor, sE, in Escherichia coli. EMBO J. 14:1032-1042
Segal, G. and E. Z. Ron. 1996. Regulation and organization of the groE and dnaK operons in eubacteria. FEMS Microbiol. Lett. 138:1-10.
Snyder, L. and W. Champness. 1997. Global regulatory mechanisms, pp.298-334. In Molecular Genetics of Bacteria. American Society for Microbiology. Washington D. C.
Straus, D. B., W. Walter and C. A. Gross. 1987. The heat shock response of E. coli is regulated by changes in the concentration of s32. Nature 329:348-351.
Straus, D., W. Walter, and C. A. Gross. 1990. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev. 4:2202-2209.
Tissières, A., H. K. Mitchell and U. Tracy. 1974. Protein synthesis in salivary glands of Drosophila melanogaster. Relation to chromosome puffs. J. Mol. Biol. 84:389-398.
Tomoyasu, T., J. Gamer, B. Bukau, M. Kanemori, H. Mori, A. J. Rutman, A. B. Openheim, T. Yura, K. Yamanaka, H. Niki, S. Hiraga and T. Ogura. 1995. Escherichia coli FtsH is a membrane-bound, ATPdependent protease which degrades the heat-shock transcription factor s32. EMBO J. 14:2551-2560.
VanBogelen, R. A. and F. C. Neidhardt. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA. 87:5589-5593.
VanBogelen, R. A., P. M. Philip and F. C. Neidhardt. 1987. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 169:26-32.
Wang, Q. and J. M. Kaguni. 1989. DnaA protein regulates transcription of the rpoH gene of Escherichia coli. J. Biol. Chem. 264:7338-7344.
Wickner, S., M. R. Maurizi and S. Gottesman. 1999. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888-1893.
Yamamori, T., K. Ito, Y. Nakamura and T. Yura. 1978. Transient regulation of proteins synthesis in Escherichia coli upon shift-up of growth temperature. J. Bacteriol. 134:1133-1140.
Yura, Y. and K. Nakahigashi. 1999. Regulation of the heat-shock response. Curr. Opin. Microbiol. 2:153-158.
Yusawa, H., H. Nagai, H. Mori, and T. Yura. 1993. Heat induction of s32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Res. 23:5449-5455.