2001, Número 1
<< Anterior
Microbiología 2001; 43 (1)
Regulación genética en respuesta al estrés calórico en Escherichia coli.
Ramírez SJ, Solís GG, Gómez EC
Idioma: Español
Referencias bibliográficas: 73
Paginas: 51-63
Archivo PDF: 240.33 Kb.
RESUMEN
Las células de prácticamente todos los organismos responden a un aumento brusco de temperatura y a otros cambios ambientales con un aumento transitorio en la concentración celular de un conjunto de proteínas denominadas proteínas de estrés calórico (PEC). Las principales PECs, chaperonas y proteasas, son parte de la maquinaria celular de plegamiento, transporte, reparación y degradación de las proteínas. La bacteria
Escherichia coli representa un paradigma en el estudio de la expresión de los genes del estrés calórico en los procariotes. En
E. coli la expresión de las PEC se regula principalmente a nivel de la transcripción. Los mas de 40 genes que codifican para las PEC definen al estimulón de estrés calórico. La mayoría de estos genes están positivamente regulados por el factor de transcripción
σ32 codificado por
rpoH, mientras que aproximadamente 10 genes, incluyendo
rpoH y
rpoE, están regulados por
σE codificado por
rpoE. La respuesta citoplásmica al calor esta regulada por
σ32, mientras que la del periplasma se regula por
σE. Las dos respuestas están interconectadas, ya que
σE regula al gene de
σ32 a altas temperaturas. La actividad de los dos factores
σ, tanto en condiciones normales como de estrés, esta regulada a diferentes niveles: transcripción, traducción, vida media y actividad de los factores. En esta revisión se presentan los modelos de regulación genética de la respuesta al calor en
E. coli en el citoplasma y en el periplasma.
REFERENCIAS (EN ESTE ARTÍCULO)
Ades, S. E., L. E. Connolly, B. M. Alba and C. A. Gross. 1999. The Escherichia coli sE-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-s factor. Genes Dev. 13:2449-2461.
Arsene, F., T. Tomoyasu, A. Mogk, C. Schirra, A. Schulze -Specking and B. Bukau. 1999. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma 32. J. Bacteriol. 181:3552-61.
Blaszczak, A., C. Georgopoulos, and K. Liberek. 1999. On the mechanism of FtsH-dependent degradation of the s32 transcriptional regulator of Escherichia coli and the role of the DnaK chaperone machine. Mol. Microbiol. 31:157-166.
Blumenthal, R. M., D. W. Borst, and R. G. Matthews. 1996. Experimental analysis of global gene regulation in Escherichia coli. Progress Nucl. Acid. Res. and Mol. Biol. 55:1-86.
Bukau, B. 1993. Regulation of the Escherichia coli heat-shock response. Mol. Microbiol. 9:671-680.
Camacho-Carranza, R., J. Membrillo-Hernández, J. Ramírez-Santos, J. Castro-Dorantes, V. Chagoya de Sánchez and M. C. Gómez-Eichelmann. 1995. Topoisomerase activity during the heat-shock response in Escherichia coli K-12. J. Bacteriol. 177:3619-3622.
Chuang, S. E., and F. R. Blattner, 1993. Characterization of twenty-six new heat shock genes of Escherichia coli. J. Bacteriol. 175:5242-5252.
Connolly, L., A. De las Peñas, B. M. Alba, and C. A. Gross. 1997. The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. Genes Dev. 11:2012-2021.
Cooper, S. and T. Ruettinger. 1975. A temperature sensitive nonsense mutation affecting the synthesis of a major protein of Escherichai coli. Mol. Gen. Genet. 139:167-176.
Craig, E. A. and C. A. Gross. 1991. Is hsp70 the cellular thermometer? Trends Biochem. Sci. 16:135-140.
De las Peñas, A., L. Connolly and C. A. Gross. 1997. The sE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of sE. Mol. Microbiol. 24:373-385.
Erickson, J. W. and C. A. Gross. 1989. Identification of the sE subunit of Escherichia coli RNA polymerase: a second alternate s factor involved in hightemperature gene expression. Genes Dev. 3:1462-1471.
Erickson, J. W., V. Vaughn, W. A. Walter, F. C. Neidhardt, and C. A. Gross. 1987. Regulation of the promo ters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev. 1:419-432.
Gómez Eichelmann, M. C. and R. Camacho Carranza. 1995. Superenrollamiento del DNA y topoisomerasas de Escherichia coli. Rev. Lat.-Amer. Microbiol. 37:291-304.
Gómez-Eichelmann, M. C. and C. H. Helmstetter. 1999. Transcription level of operon ftsYEX and activity of promoter P1 of rpoH during the cell cycle in Escherichia coli. J. Basic. Microbiol. 39:237-242.
Gottesman, S. 1999. Regulation by proteolysis: developmental switches. Curr. Opin. Microbiol. 2:142-147.
Gottesman, M. E. and W. A. Hendrickson. 2000. Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Curr. Opin. Microbiol. 3:197-202.
Gross, C. A. 1996. Function and regulation of the heat shock proteins, pp.1382-1399. In F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. Rezniko ff, M. Riley, M. Schaechter and H. E. Umbarger (Eds). Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology. Washington D.C.
Grossman, A. D., J. W. Erickson and C. A. Gross. 1984. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383-390.
Hecker, M., W. Schumann and U. Volker. 1996. Heatshock and general stress response in Bacillus subtilis. Mol. Microbiol. 19:417-428.
Horwich, A. L., E. U. Weber-Ban and D. Finley. 1999. Chaperone rings in protein folding and degradation. Proc. Natl. Acad. Sci. USA 96:11033-11040.
Hughes, K. T. and K. Mathee. 1998. The anti-sigma factors. Annu. Rev. Microbiol. 52:231-286.
Kallipolitis, B. H. and P. Valentin-Hansen. 1998. Transcription of rpoH, encoding the Escherichia coli heat-shock regulator s32, is negatively controlled by the cAMP-CRP/CytR nucleoprotein complex. Mol. Microbiol. 29:1091-1099.
Krueger, J. H. and G. C. Walker. 1984. groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in an htpR+-dependent fashion. Proc. Natl. Acad. Sci. USA 81:1499-1503.
Landick, R., V. Vaughn, E. T. Lau, R. A. VanBogelen, J. W. Erickson, and F. C. Neidhardt. 1984. Nucleotide sequence of the heat shock regulatory gene of E. coli suggests its protein product may be a transcription factor. Cell 38:175-182.
Lee-Rivera, I. y Gómez-Eichelmann, M. C. 1994. Escherichia coli cells with mutations in the gene for adenylate cyclase (cya) exhibit a heat shock response. FEMS Microbiol. Lett. 121:35-38
Lemaux, P. G., S. L. Heredeen, P. L. Bloch and F. C. Neidhardt. 1978. Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts. Cell 13:427-434.
Liberek, K., J. Marszalek, D. Ang, C. Georgopoulos, and M. Zylicz. 1991. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA. 88:2874-2878.
Lipinska, B., Zylicz, M. and C. Georgopoulos. 1990. The htrA (degP) protein, essential for Escherichia coli growth at high temperatures, is an endopeptidase. J. Bacteriol. 172:1791-1797.
López-Sánchez, F., J. Ramírez-Santos and M. C. Gómez-Eichelmann. 1997. In vivo effect of DNA relaxation on the transcription of gene rpoH in Escherichia coli. Biochim. Biophys. Acta. 1353:79-83.
Mayhew, M., A. C. R. Da Silva, J. Martin, H. Erdjument-Bromage, P. Tempst, and F. U. Hartl. 1996. Protein folding in the central cavity of the GroELGroES chaperonin complex. Nature 379:420-426.
McCarty, J. S., S. Rudiger, H. J. Schonfeld, J. Schneider-Mergener, K. Nakahigashi, T. Yura and B. Bukau. 1996. Regulatory region C of E. coli heat shock transcription factor, σ32, constitutes a DnaK binding site and is conserved among eubacteria. J. Mol. Biol. 256:829-837.
McCarty, J. S., and G. C. Walker. 1991. DnaK as a thermometer: Threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc. Natl. Acad. Sci. USA. 88:9513-9517.
Mecsas, J., P. E. Rouviere, J. W. Erickson, T. J. Donohue, and C. A. Gross. 1993. The activity of sE, an Escherichia coli heat-inducible s-factor, is modulated by expression of outer membrane proteins. Genes Dev. 7:2618-2628.
Mejía R., M. C. Gómez-Eichelmann and M. S. Fernández. 1995. Membrane fluidity of Escherichia coli during heat-shock. Biochim. Biophys. Acta. 1239:195-200.
Membrillo-Hernández, J., A. Nuñéz-de la Mora, T. del Río-Albrechtsen, R. Camacho-Carranza and M. C. Gómez-Eichelmann. 1995. Thermally-induced cell lysis in Escherichia coli K12. J. Basic Microbiol. 35:41-46.
Messer, W. and C. Weigel. 1997. DnaA initiator - also a transcription factor. Mol. Microbiol. 24:1-6.
Missiakas, D., J. M. Betton, and S. Raina. 1996. New components of protein folding in the extra-cytoplasmic compartments of Escherichai coli: SurA, FkpA, and Skp/OmpH. Mol. Microbiol. 21:871-884.
Missiakas, D., M. P. Mayer, M. Lemaire, C. Georgopoulos and S. Raina. 1997. Modulation of the Escherichia coli σE (RpoE) heat-shock transcriptionfactor activity by the RseA, RseB and RseC proteins. Mol. Microbiol. 24:355-371.
Missiakas, D. and S. Raina. 1997. Protein folding in the bacterial periplasm. J. Bacteriol. 179:2465-2471.
Missiakas, M. and S. Raina. 1998. The extracytoplasmic function sigma factors: role and regulation. Mol. Microbiol. 28:1059-1066.
Missiakas, D., S. Raina and C. Georgopoulos. 1996. Heat shock regulation, pp.481-501. In E. C. C. Lin and A. S. Lynch (Eds). Regulation of Gene Expression in Escherichia coli. R. G. Landes Company, Austin, TX.
Mizusawa, S. and S. Gottesman. 1983. Protein degradation in Escherichia coli: The lon gene controls the stability of the SulA protein. Proc. Natl. Acad. Sci. USA 80:358-362.
Morita, M. T., Y. Tanaka, T. S. Kodama, Y. Kyogoku, H. Yanagi, and T. Yura. 1999. Translation induction of heat shock transcription factor σ32: evidence for a builtin RNA thermosensor. Genes Dev. 13:655-665.
Nagai, H., R. Yano, J. W. Erickson, and T. Yura. 1990. Trancriptional regulation of the heat shock regulatory gene rpoH in Escherichia coli: involvement of a novel catabolite-sensitive promoter. J. Bacteriol. 172:2710-2715.
Nagai, H., H. Yuzawa and T. Yura. 1991. Regulation of the heat shock response in E. coli: involvement of the positive and negative cis-acting elements in translational control of σ32 synthesis. Biochimie 73:1473-1479.
Nakahigashi, K., H. Yanagi, and T. Yura. 1998. Regulatory conservation and divergence of σ32 homologs from gram-negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens. J. Bacteriol. 180:2402-2408.
Narberhaus, F. 1999. Negative regulation of bacterial heat shock genes. Mol. Microbiol. 31:1-8.
Neidhardt, F. C. and R. A. Vanbogelen.1987. Heat shock response, pp.1334-1345. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter and H. E. Umbarger (Eds). Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology. Washington D.C.
Neumann, D. and L. Nover. 1991. Heat shock-induced changes of cell ultrastructure, pp.346-371. In L. Nover (Ed). Heat Shock Response. CRC Press. Boca Raton, Florida.
Nover, L. 1991. Inducers of HSP synthesis: heat shock and chemical stressors, pp.5-40. In L. Nover (Ed). Heat Shock Response. CRC Press. Boca Raton, Florida.
Oliver, D. B. 1996. Periplasm, pp.88-103. In F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. Reznikoff, M. Riley, M. Schaechter and H. E. Umbarger (Eds). Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology. Washington D.C.
Paek, K. H. and G. C. Walker. 1987. Escherichia coli dnaK null mutants are inviable at high temperature. J. Bacteriol. 169:283-290.
Parsell, D. A. and Lindquist, S. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27:437-496.
Raina, S., D. Missiakas, and C. Georgopoulos. 1995. The rpoE gene encoding the σE (s24) heat shock sigma factor of Escherichia coli. EMBO J. 14:1043-1055. 56. Ramírez-Santos, J., J. Collado-Vides, M. García-Varela, and M. C. Gómez-Eichelmann. 2001. Conserved regulatory elements of the promoter sequence of the gene rpoH of enteric bacteria. Nucleic Acids Res. 29:380-386.
Ramírez-Santos, J. and M. C. Gómez-Eichelmann. 1998. Identification of s32-like factors and ftsX-rpoH gene arrangements in enteric bacteria. Can. J. Microbiol. 44:565-568.
Richarme, G. and M. Kohiyama. 1993. Specificity of the Escherichia coli chaperone DnaK (70-kDa heat shock protein) for hydrophobic amino acids. J. Biol. Chem. 268:24074-24077.
Richmond, C. S., J. D. Glasner, R. Mau, H. Jin and F. R. Blattner. 1999. Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 27:3821- 3835.
Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DPN in Drosophila. Experientia 18:571-573.
Rouviere, P. E., A. De las Peñas, J. Mecsas, C. Z. Lu, K. E. Rudd, and C. A. Gross. 1995. rpoE, the gene encoding the second heat-shock sigma factor, sE, in Escherichia coli. EMBO J. 14:1032-1042
Segal, G. and E. Z. Ron. 1996. Regulation and organization of the groE and dnaK operons in eubacteria. FEMS Microbiol. Lett. 138:1-10.
Snyder, L. and W. Champness. 1997. Global regulatory mechanisms, pp.298-334. In Molecular Genetics of Bacteria. American Society for Microbiology. Washington D. C.
Straus, D. B., W. Walter and C. A. Gross. 1987. The heat shock response of E. coli is regulated by changes in the concentration of s32. Nature 329:348-351.
Straus, D., W. Walter, and C. A. Gross. 1990. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev. 4:2202-2209.
Tissières, A., H. K. Mitchell and U. Tracy. 1974. Protein synthesis in salivary glands of Drosophila melanogaster. Relation to chromosome puffs. J. Mol. Biol. 84:389-398.
Tomoyasu, T., J. Gamer, B. Bukau, M. Kanemori, H. Mori, A. J. Rutman, A. B. Openheim, T. Yura, K. Yamanaka, H. Niki, S. Hiraga and T. Ogura. 1995. Escherichia coli FtsH is a membrane-bound, ATPdependent protease which degrades the heat-shock transcription factor s32. EMBO J. 14:2551-2560.
VanBogelen, R. A. and F. C. Neidhardt. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA. 87:5589-5593.
VanBogelen, R. A., P. M. Philip and F. C. Neidhardt. 1987. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 169:26-32.
Wang, Q. and J. M. Kaguni. 1989. DnaA protein regulates transcription of the rpoH gene of Escherichia coli. J. Biol. Chem. 264:7338-7344.
Wickner, S., M. R. Maurizi and S. Gottesman. 1999. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888-1893.
Yamamori, T., K. Ito, Y. Nakamura and T. Yura. 1978. Transient regulation of proteins synthesis in Escherichia coli upon shift-up of growth temperature. J. Bacteriol. 134:1133-1140.
Yura, Y. and K. Nakahigashi. 1999. Regulation of the heat-shock response. Curr. Opin. Microbiol. 2:153-158.
Yusawa, H., H. Nagai, H. Mori, and T. Yura. 1993. Heat induction of s32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Res. 23:5449-5455.