2022, Number 3
<< Back Next >>
Rev Mex Anest 2022; 45 (3)
Lactate as an early marker of cerebral hypoxia in neurological patients under general anesthesia: a systematic review
Charry-Borrero DA, Tuta-Quintero E, Callejas-Ávila PA, Camilo-Cedeño J, Pinzón A, Reyes-Cruz D, García-Espitia E, Mazzei-Strocchia E, Valencia C, Barahona-Espinosa D, León-Ariza HH, Acosta-Pradilla L, Ríos-Barbosa F, Botero-Rosas DA
Language: Spanish
References: 31
Page: 163-171
PDF size: 341.83 Kb.
ABSTRACT
Perioperative neurological complications secondary to hypoxia during sedation and general anesthesia procedures are frequent in cardiovascular surgery, and in patients with comorbidities. However, so far there is no consensus for the diagnosis of these possible complications. In patients with head trauma severe and/or subarachnoid hemorrhage cerebral lactate was not useful for predicting cerebral hypoxia, however the lactate/pyruvate ratio could be a tool for intraoperative diagnosis of acute cerebral hypoxia. Studies suggest that it must be associated with other markers or multimodal monitoring. Further studies are needed to evaluate lactate predictive value for the diagnosis of cerebral hypoxia.
REFERENCES
Hood R, Budd A, Sorond FA, et al. Peri-operative neurological complications. Anaesthesia. 2018;73:67-75. doi: 10.1111/anae.14142.
Pai SL, Wang RD, Aniskevich S. Perioperative stroke: incidence, etiologic factors, and prevention. Minerva Anestesiol. 2017;83:1178-1189. doi: 10.23736/S0375-9393.17.11976-0.
Chi S, Stein E, Chaney MA, et al. Case 5-2009 severe lactic acidosis during cardiac surgery. J Cardiothorac Vasc Anesth. 2009;23:711-719. doi: 10.1053/j.jvca.2009.05.025.
Bijker JB, Persoon S, Peelen LM, et al. Intraoperative hypotension and perioperative ischemic stroke after general surgery, a nested case-control study. Anesthesiology. 2012;116:658-664. doi: 10.1097/ALN.0b013e3182472320.
Sun LY, Chung AM, Farkouh ME, et al. Defining an intraoperative hypotension threshold in association with stroke in cardiac surgery. Anesthesiology. 2018;129:440-447. doi: 10.1097/ALN.0000000000002298.
Badenes R, García-Pérez ML, Bilotta F, et al. Intraoperative monitoring of cerebral oximetry and depth of anaesthesia during neuroanesthesia procedures. Minerva Anestesiol. 2016;29:1178-1189. doi: 10.1097/ACO.0000000000000371.
Zahra K, Gopal N, Freeman WD, et al. Using cerebral metabolites to guide precision medicine for subarachnoid hemorrhage: lactate and pyruvate. Metabolites. 2019;9. doi: 10.3390/metabo9110245.
Bhatia R, Hashemi P, Razzaq A, et al. Application of rapid-sampling, online microdialysis to the monitoring of brain metabolism during aneurysm surgery. Neurosurgery. 2006;58:313-21. doi: 10.1227/01.NEU.0000208963.42378.83.
Rostami E, Engquist H, Howells T, et al. Early low cerebral blood flow and high cerebral lactate: prediction of delayed cerebral ischemia in subarachnoid hemorrhage. J Neurosurg. 2018;128:1762-1770. doi: 10.3171/2016.11.JNS161140.
Schmidt JM, Ko SB, Helbok R, et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke. 2011;42:1351-1356. doi: 10.1161/STROKEAHA.110.596874.
Nikaina I, Paterakis K, Paraforos G, et al. Cerebral perfusion pressure, microdialysis biochemistry, and clinical outcome in patients with spontaneous intracerebral hematomas. J Crit Care. 2012;27:83-88. doi: 10.1016/j.jcrc.2011.04.004.
Dagal A, Lam AM. Cerebral blood flow and the injured brain: how should we monitor and manipulate it? Curr Opin Anaesthesiol. 2011;24:131-137. doi: 10.1097/ACO.0b013e3283445898.
Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97:18-25. doi: 10.1093/bja/ael109.
Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg. 2009;87:36-45. doi: 10.1016/j.athoracsur.2008.08.070.
Hlatky R, Valadka AB, Goodman JC, et al. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma. 2004;21:894-906. doi: 10.1089/0897715041526195.
Deschamps A, Hall R, Grocott H, et al. Cerebral oximetry monitoring to maintain normal cerebral oxygen saturation during high-risk cardiac surgery a randomized controlled feasibility trial. Anesthesiology. 2016;124:826-836. doi: 10.1097/ALN.0000000000001029.
Vernieri F, Tibuzzi F, Pasqualetti P, et al. Transcranial doppler and near-infrared spectroscopy can evaluate the hemodynamic effect of carotid artery occlusion. Stroke. 2004;35:64-70. Available in: doi.org/10.1161/01.STR.0000106486.26626.E2
Falkowska A, Gutowska I, Goschorska M, et al. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci. 2015;16:25959-25981. doi: 10.3390/ijms161125939.
Sala N, Suys T, Zerlauth JB, et al. Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury. J Cereb Blood Flow Metab. 2013;33:1815-1822. doi: 10.1038/jcbfm.2013.142.
Ko SB, Choi HA, Parikh G, et al. Multimodality monitoring for cerebral perfusion pressure optimization in comatose patients with intracerebral hemorrhage. Stroke. 2011;42:3087-3092. doi: 10.1161/STROKEAHA.111.623165.
Merino MÁ, Sahuquillo J, Borrull A, et al. ¿Es el lactato un buen indicador de hipoxia tisular? Resultados de un estudio piloto en 21 pacientes con un traumatismo craneoencefálico. Neurocirugia. 2010;21:289-300. doi: 10.1016/s1130-1473(10)70120-2.
Hutton B, Catalá-López F, Moher D. La extensión de la declaración PRISMA para revisiones sistemáticas que incorporan metaanálisis en red: PRISMA-NMA. Med Clin (Barc). 2016;147:262-266. doi: 10.1016/j.medcli.2016.02.025.
Ciapponi A. QUADAS-2 : instrumento para la evaluación de la calidad de estudios de precisión diagnóstica. Evidencia. 2015;22-26. Disponible en: http://www.foroaps.org/files/64fe85009abba8c506e903adf90dbc17.pdf
Hutchinson PJ, Al-Rawi PG, O'Connell MT, et al. Biochemical changes related to hypoxia during cerebral aneurysm surgery: combined microdialysis and tissue oxygen monitoring: case report. Neurosurgery. 2000;46:201-206. doi: 10.1093/neurosurgery/46.1.201.
Patet C, Suys T, Bloch J, et al. Neuroenergetic response to prolonged cerebral glucose depletion after severe brain injury and the role of lactate. J Neurotrauma. 2015;32:1-27. doi: 10.1089/neu.2014.3781.
Chen HI, Stiefel MF, Oddo M, et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69:53-63. doi: 10.1227/NEU.0b013e3182191451.
Gupta D, Singla R, Mazzeo AT, et al. Detection of metabolic pattern following decompressive craniectomy in severe traumatic brain injury: a microdialysis study. Brain Inj. 2017;31:1660-1666. doi: 080/02699052.2017.1370553.
Patet C, Quintard H, Zerlauth JB, et al. Bedside cerebral microdialysis monitoring of delayed cerebral hypoperfusion in comatose patients with poor grade aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2017;88:332-338. doi: 10.1136/jnnp-2016-313766.
Chieregato A, Marchi M, Fainardi E, et al. Cerebral arterio-venous pCO2 difference, estimated respiratory quotient, and early posttraumatic outcome: Comparison with arterio-venous lactate and oxygen differences. J Neurosurg Anesthesiol. 2007;19:222-228. Available in: http://dx.doi.org10.1097/ANA.0b013e31806589f6
Philips BJ, Armstrong IR, Pollock A, et al. Cerebral blood flow and metabolism in patients with chronic liver disease undergoing orthotopic liver transplantation. Hepatology. 1998;27:369-376. doi: 10.1002/hep.510270209.
Dalsgaard MK. Fuelling cerebral activity in exercising man. J Cereb Blood Flow Metab. 2006;26:731-750. doi: 10.1038/sj.jcbfm.9600256.