2001, Number 1
<< Back Next >>
Microbiología 2001; 43 (1)
Phenol biodegradation using a repeated batch culture of Candida tropicalis in a multistage bubble column.
Ruiz-Ordaz N, Ruiz- Lagunez JC, Castañón-González JH, Hernández-Manzano E, Cristiani-Urbina E, Galíndez-Mayer J
Language: English
References: 31
Page: 19-25
PDF size: 93.42 Kb.
ABSTRACT
As in many other microorganisms, the growth rate of
C. tropicalis is affected by phenol. Besides, when the yeast is aerobically cultivated in a medium containing phenol, using a bubble column, the yeast cell flotation phenomenon occurs, which makes the continuous operation of this type of reactor difficult. Therefore, a system of phenol degradation, which recycles the biomass separated by flotation, was devised in this work. In order to reduce the substrate toxicity observed at high phenol concentrations, the bubble column used in the biodegradation studies was fed in a semibatch mode. So, a semicontinuous system was implemented to treat effluents with relatively high concentrations (› 9,000 ppm) of phenol, by replacing periodically about 22% of the bioreactor operational volume. The phenol removal efficiencies obtained with this system were higher than 98.7%.
REFERENCES
Ahmed, A. M. 1995. Phenol degradation by Pseudomonas aeruginosa. J. Environ. Sc. Health 30:99-103.
Alleman, B. C., B. E. Logan and R. L. Gilbertson. 1995. Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors. Water Res. 29:61-67.
Anselmo, A. M. and J. M. Novais. 1992. Biological treatment of phenolic wastes: comparison between free and immobilized cell systems. Biotechnol. Lett. 14:239-244.
Borja, R., A. Martín, R. Maestro, M. Luque and M. M. Durán. 1993. Enhancement of the anaerobic digestion of wine distillery wastewater by the removal of the phenolic inhibitors. Biores. Technol. 45:99-104.
Bouwer, E. J. and A. J. B. Zehnder. 1993. Bioremediation of organic compounds –putting microbial metabolism to work. Trends Biotechnol. 11:360-367.
Brauer, H., 1985. Biological waste water treatment in a reciprocating jet bioreactor, pp. 519-535. In H. J. Rehm and G. Reed (Ed.). Biotechnology Vol. II. Fundamentals of Biochemical Engineering. Verlag Chemie. Federal Republic of Germany.
Collins, L. D. and A. J. Daugulis. 1997. Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors. Biotechnol. Bioeng. 55:155-162.
Chang, Y. H., C. T. Li, M. C. Chang and W. K. Shieh. 1998. Batch phenol degradation by Candida tropicalis and its fusant. Biotechnol. Bioeng. 60:391-395.
Chisti, M. Y., 1989. Airlift Reactors:Current Technology, pp. 33-86. In M. Y. Chisti (Ed.). Airlift bioreactors. Elsevier Applied Science. New York.
Chung, T. S., K. C. Loh and H. L. Tay. 1998. Development of polysulfone membranes for bacteria immobilization to remove phenol. J. Appl. Polym. Sc. 70:2585-2594.
Ehrhardt, H. M. and H. J. Rehm. 1989. Semicontinuous and continuous degradation of phenol by Pseudomonas putida P8 adsorbed on activated carbon. Appl. Microbiol. Biotechnol. 30:312-317.
Fava, F., P. M. Armenante and D. Kafkewitz. 1995. Aerobic degradation and dechlorination of 2-chorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain. Lett. Appl. Microbiol. 21:307-312.
Fedorak, P. M. and S. E. Hrudey. 1984. The effects of phenol and some alkyl phenolics on batch anaerobic methanogenesis. Water Res. 18:361-367.
Fulthorpe, R. R. and D. G. Allen. 1995. A comparison of organochlorine removal from bleached Kraft pulp and paper-mill effluents by dehalogenating Pseudomonas, Ancylobacter and Methylobacterium strains. Appl. Microbiol. Biotechnol. 42:782-787.
González, G., M. G. Herrera, M. T. García and M. M. Pena. 2001. Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized- bed bioreactors. Biores. Technol. 76:245-251.
Greenberg, A. E., L. S. Clesceri and A. D. Eaton, 1992. Phenols, pp. 5-33. In A. E. Greenberg, L. S. Clesceri and A. D. Eaton (Ed.). Standard Methods for the Examination of Water and Wastewater. American Public Health Association Publication Office. Washington, D.C.
Hill, G. A. and C. W. Robinson. 1975. Substrate inhibition kinetics: phenol degradation by Pseudomonas putida. Biotechnol. Bioeng. 17:1599-1615.
Hobson, M. J. and N. F. Millis. 1990. Chemostat studies of a mixed culture growing on phenolics. Res. J. Water Pollut. Control Fed. 62:684-691.
Kapoor, A. 1998. Application of immo bilized mixed bacterial culture for the degradation of phenol in oil refinery effluent. J. Environ. Sc. Health. 35:1009-1021.
Kashyap, S., A. Sundararajan and L. K. Ju. 1998. Flotation characteristics of cyanobacterium Anabaena flosaquae for gas vesicle production. Biotechnol. Bioeng. 60:636-641.
Kitai, A., R. Okamoto and A. Ozaki. 1972. Continuous culture using a perforated plate column. pp. 147-153. In G. Terui (Ed.). Proc. IV IFS:Ferment. Technol. Today. Society of Fermentation Technology. Kyoto, Japan.
Krug, M., H. Ziegler and G. Straube. 1985. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. I. Physiology of growth and substrate utilization. J. Basic Microbiol. 25:103-110.
Kurtz, A. M. and S. A. Crow. 1997. Transformation of chlororesorcinol by the hydrocarbonoclastic yeasts Candida maltosa , Candida tropicalis, and Trichosporon oivide. Curr. Microbiol. 35:165-168.
Lin, J. E., H. Y. Wang and R. F. Hickey. 1990. Degradation kinetics of pentachlorophenol by Phanerochaete chrysosporium. Biotechnol. Bioeng. 35:1125-1134.
Morris, S. and J. N. Lester. 1994. Behaviour and fate of polychlorinated biphenyls in a pilot wastewater treatment plant. Water Res. 28:1553-1561.
Mörsen, A. and H. J. Rehm. 1990. Degradation of phenol by a defined mixed culture immobilized by adsorption on activated carbon and sintered glass. Appl. Microbiol. Biotechnol. 33:206-212.
Ruiz-Ordaz, N., E. Hernández-Manzano, J. C. Ruiz-Lagunez, E. Cristiani-Urbina, and J. Galíndez-Mayer. 1998. Growth kinetic model that describes the inhibitory and lytic effects of phenol on Candida tropicalis yeast. Biotechnol. Prog. 14:966-969.
Ruiz-Ordaz, N., C. Juárez-Ramírez, H. Castañón-González, A. R. Lara -Rodríguez, E. Cristiani-Urbina and J. Galíndez-Mayer. 2000. Aerobic bioprocesses and bioreactors used for phenol degradation by free and immobilized yeast cells. pp. 83-94. In S. G. Pandalai (Ed.). Recent Research Developments in Biotechnology and Bioengineering. Research Signpost. Trivandrum, India.
Schröder, M., C. Müller, C. Posten, W. D. Deckwer and V. Hecht. 1997. Inhibition kinetics of phenol degradation from unstable steady-state data. Biotechnol. Bioeng. 54:567-576.
Thomas, A. and M. A. Winkler, 1977. Foam separation of biological materials, pp. 42-71. In A. Wiseman (Ed.). Topics in Enzyme and Fermentation Biotechnology I. Ellis Horwood Limited. United Kingdom.
Yang, R. D. and A. E. Humphrey. 1975. Dynamic and steady-state studies of phenol biodegradation in pure and mixed cultures. Biotechnol. Bioeng. 17:1211-1235.