2021, Number 1
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2021; 37 (1)
Clinical implications of chemokines and their receptors in transfusion medicine and transplantation
Soler NG
Language: Spanish
References: 43
Page: 1-22
PDF size: 372.99 Kb.
ABSTRACT
Introduction:
Chemokines are secreted proteins with size in the range of 8-10 kDa, with numerous functions in normal and pathological physiology. The term derives from the words chemotactic cytokines, reflecting its important role in the chemoattraction of leukocytes. However, the evidence shows that chemokines have many other functions such as intercellular communication, cell activation and cell cycle regulation.
Objetive:
To present current knowledge about chemokines and their receptors, and the clinical significance of these in transfusion medicine and transplantation.
Method:
A review of the literature was made, in English and Spanish, through the PubMed website and the Google academic search engine of articles published in the last 10 years. An analysis and summary of the revised bibliography was made.
Developing:
The transcription of most of the chemokine genes is inducible and occurs in response to specific cellular stimuli. Chemokines play an important role in the mobilization of hematopoietic progenitor cells for the transplantation and localization of transplanted hematopoietic progenitor cells. In the ABO incompatibility models, the CXC and CC chemokines are produced at high levels.
Conclusions:
There are many opportunities for future research on chemokines in transfusion medicine due to their considerable redundancy and superposition in the biological function of these molecules and their receptors. They are just one part of a much larger and more complex process within the network of cytokines and other molecules of the immune system.
REFERENCES
López-Cotarelo P, Gómez-Moreira C, Criado-García O, Sánchez L, Rodríguez-Fernández JL. Beyond Chemoattraction Multifunctionality of Chemokine Receptors in Leukocytes. Trends Immunol. 2017;38(12):927-41. DOI: http://dx.doi.org/10.1016/j.it.2017.08.004
Legler DF, Thelen M. Chemokines: Chemistry, Biochemistry and Biological Function. Chimia. 2016; 70: 856-9. DOI: https://doi.org/10.2533/chimia.2016.856
Creed TM, T Shweta, Ward RA, McLeish KR. Endocytosis is required for exocytosis and priming of respiratory burst activity in human neutrophils. Inflamm Res. 2017; 66(10): 891-9. DOI: https://doi.org/10.1007/s00011-017-1070-2
Leal Rojas IM, Mok W-H, Pearson FE, Minoda Y, Kenna TJ, Barnard RT, Radford KJ. Human Blood CD1c+ Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4+ T Cells. 5. Front Immunol. 2017; 8:971. DOI: https://doi.org/10.3389/fimmu.2017.00971
Silvestre-Roig C, Hidalgo A, Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood. 2016; 127:2173-81. DOI: https://doi.org/10.1182/blood-2016-01-688887
Bonavita O, Mollica V, Massara M, Mantovani A, Bonecchi R. Regulation of hematopoiesis by the chemokine system. Cytokine. 2018; 109: 76-80. DOI: https://doi.org/10.1016/j.cyto.2018.01.021
McCully ML, Kouzeli A, Moser B. Peripheral Tissue Chemokines: Homeostatic Control of Immune Surveillance T Cells. Trends in Immunology. 2018; 39(9): 734-47. DOI: https://doi.org/10.1016/j.it.2018.06.003
Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol. 2015;93(4):372-83. DOI: https://doi.org/10.1038/icb.2015.15
IUIS/WHO Subcommittee on Chemokine Nomenclature: Chemokine/chemokine receptor nomenclature. Cytokine 2003;21:48-9.
Panda S, Padhiary SK, Routray S. Chemokines accentuating protumoral activities in oral cancer microenvironment possess an imperious stratagem for therapeutic resolutions. Oral Oncol. 2016, 60:8-17. DOI: https://10.1016/j.oraloncology.2016.06.008
Chew AL, Tan WY, Khoo BY. Potential combinatorial effects of recombinant atypical chemokine receptors in breast cancer cell invasion: A research perspective. Biomed Rep. 2013;1(2):185-92.
Bonvin P, Gueneau F, Buatois V, Charreton-Galby M, Lasch S, Messmer M, et al. Antibody Neutralization of CXCL10 in Vivo Is Dependent on Binding to Free and Not Endothelial-bound Chemokine: implications for the design of a new generation of anti-chemokine therapeutic antibodies. J Biol Chem. 2017;292(10):4185-97. DOI: https://doi.org/10.1074/jbc.M116.745877
Lo DJ, Kaplan B, Kirk AD. Biomarkers for kidney transplant rejection. Nat Rev Nephrol. 2014;10(4):215-25. DOI: https://doi.org/10.1038/nrneph
Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem. 2017;60(12):4735-79. DOI: https://doi.org/10.1021/acs.jmedchem.6b01309
Gustavsson M, Zheng Y, Handel TM. Production of Chemokine/Chemokine Receptor Complexes for Structural Biophysical Studies. Methods Enzymol. 2016;570:233-60. DOI: https://doi.org/10.1016/bs.mie.2015.10.003
Stone MJ, Hayward JA, Huang Cheng, Huma ZE, Sanchez J. Mechanisms of Regulation of the Chemokine-Receptor Network. International Journal Molecular Science. 2017;18(2):342. DOI: https://doi.org/10.3390/ijms18020342
Horuk R. The Duffy Antigen Receptor for Chemokines DARC/ACKR1. Front Immunol. 2015;6:279. DOI: https://doi.org/10.3389/fimmu.2015.00279
Sepuru KM, Rajarathnam K. CXCL1/MGSA Is a Novel Glycosaminoglycan (GAG)-binding Chemokine: structural evidence for two distinct non-overlapping binding domains. J BiolChem. 2016;291(8):4247-55 DOI: https://doi.org/10.1074/jbc.M115.697888
Gao D, Cazares LH, Fish EN. CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis. BMC Cancer. 2017;17(1):834. DOI: https://doi.org/10.1186/s12885-017-3817-0
McNaughton EF, Eustace AD, King S, Sessions RB, Kay A, Farris M, et al. Novel Anti-Inflammatory Peptides Based on Chemokine-Glycosaminoglycan Interactions Reduce Leukocyte Migration and Disease Severity in a Model of Rheumatoid Arthritis. J Immunol. 2018;200(9):3201-17. DOI: https://doi.org/10.4049/jimmunol.1701187
Thiriot A, Perdomo C, Cheng G, Novitzky-Basso I, McArdle S, Kishimoto JK, et al. Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol. 2017;15(1):45. DOI: https://doi.org/10.1186/s12915-017-0381-7
Ridiandries A, Tan JT, Bursill CA. The Role of CC-Chemokines in the Regulation of Angiogenesis. Int J Mol Sci. 2016;17(11): E1856. DOI: https://doi.org/10.3390/ijms17111856
Pan L, Lv J, Zhang Z, Zhang Y. Adaptation and Constraint in the Atypical Chemokine Receptor Family in Mammals. Biomed Res Int. 2018. DOI: https://doi.org/10.1155/2018/9065181
Salimi P, Esmaeili A, Hashemi M, Behjati M. Endogenous expression of the atypical chemokine receptor CCX-CKR (CCRL1) gene in human embryonic kidney (HEK 293) cells. Mol Cell Biochem. 2016;412(1-2):229-33. DOI: https://doi.org/10.1007/s11010-015-2629-2
Cecyn KZ, Kimura EYS, Lima DMSM, Yamamoto M, Bordin JO, de Oliveira JSR. Expression of adhesion molecules on CD34+ cells from steady-state bone marrow before and after mobilization and their association with the yield of CD34+ cells. Blood Res. 2018;53(1):61-70. DOI: https://doi.org/10.5045/br.2018.53.1.61
Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. Journal Clinical Investigation 2003;111(2):187-96. DOI: https://doi.org/10.1172/JCI15994
Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med. 2005;201 (8): 1307-18. DOI: https://doi.org/10.1084/jem.20041385
Teipel R, Oelschlägel U, Wetzko K, Schmiedgen M, Kramer M, Rücker-Braun E, et al. Differences in Cellular Composition of Peripheral Blood Stem Cell Grafts from Healthy Stem Cell Donors Mobilized with Either Granulocyte Colony-Stimulating Factor (G-CSF) Alone or G-CSF and Plerixafor. Biol Blood Marrow Transplant. 2018; 24(11):2171-7. DOI: https://doi.org/10.1016/j.bbmt.2018.06.023
Magenau J, Runaas L, Reddy P. Advances in understanding the pathogenesis of graft-versus-host disease. Br J Haematol. 2016; 173: 190-205. DOI: https://doi.org/10.1111/bjh.13959
Zeiser R, Blazar BR. Acute Graft-versus-Host Disease-Biologic Process, Prevention, and Therapy. 30. N Engl J Med. 2017; 377:2167-79. DOI: https://doi.org/10.1056/NEJMra1609337
Gauthier JM, Li W, Hsi-Min H, Takahashi T, Arefanian S, Krupnick AS, et al. Mechanisms of Graft Rejection and Immune Regulation after Lung Transplant. Annals ATS. 2017; 14(S3):S216-9. DOI: https://doi.org/10.1513/AnnalsATS.201607-576MG
Neujahr DC, Perez SD, Mohammed A, Ulukpo O, Lawrence EC, Fernandez F, et al. Cumulative exposure to gamma interferon-dependent chemokines CXCL9 and CXCL10 correlates with worse outcome after lung transplant. Am J Transplant. 2011;12(2):438-46. DOI: https://doi.org/10.1111/j.1600-6143.2011.03857.x
Madhumita C, Dominik R, Meinrad G. Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochemical Society Transactions. 2015; 43(4):720-6. DOI: https://doi.org/10.1042/BST20150113
Fox JM, Kausar F, Day A, Osborne M, Hussain K, Mueller A, et al. CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. Sci Rep. 2018;8(1):9466. DOI: https://doi.org/10.1038/s41598-018-27710-9
Brown AJ, Sepuru KM, Sawant KV, Rajarathnam K. Platelet-Derived Chemokine CXCL7 Dimer Preferentially Exists in the Glycosaminoglycan-Bound Form: Implications for Neutrophil-Platelet Crosstalk. Front Immunol. 2017;8:1248. DOI: https://doi.org/10.3389/fimmu.2017.01248
Wang Z, Shang H, Jiang Y. Chemokines and Chemokine Receptors: Accomplices for Human Immunodeficiency Virus Infection and Latency. Front Immunol. 2017;8:1274. DOI: https://doi.org/10.3389/fimmu.2017.01274
Hermand P, Liliane C, Cédric P, Catherine V, Christophe C. Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1. Sci Rep. 2016;6:33786. DOI: https://doi.org/10.1038/srep33786
Hojo-Souza NS, Pereira DB, de Souza FS, de Oliveira TA, Santos M, Shugiro M, et al. On the cytokine/chemokine network during Plasmodium vivax malaria: new insights to understand the disease. Malar J. 2017;16(1):42. DOI: https://doi.org/10.1186/s12936-017-1683-5
Lusso P. Chemokines and HIV: The First Close Encounter. Front Immunol. 2015;6:294. DOI: https://doi.org/10.3389/fimmu.2015.00294
Dupont L, Reeves MB. Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol. 2015;26(2):75-89. DOI: https://doi.org/10.1002/rmv.1862
Chang CC, Lee TC, Su MJ, Hsiu-Chen L, Fang-Yi C, Yi-Ting C, et al. Transfusion-associated adverse reactions (TAARs) and cytokine accumulations in the stored blood components: the impact of prestorage versus poststorage leukoreduction. Oncotarget. 2017;9(4):4385-94. DOI: https://doi.org/10.18632/oncotarget.23136
Sut C, Tariket S, Chou ML, Garraud O, Laradi S, Hamzeh-Cognasse H, et al. Duration of red blood cell storage and inflammatory marker generation. BloodTransfus. 2017;15(2):145-52. DOI: https://doi.org/10.2450/2017.0343-16
Garraud O, Tariket S, Sut C, Haddad A, Aloui C, Chakroun T, et al. Transfusion as an Inflammation Hit: Knowns and Unknowns. Front Immunol. 2016;7:534. 534. DOI: https://doi.org/10.3389/fimmu.2016.00534