2020, Number 2
Characterization of three patients with a supernumerary chromosomal marker derived from an inv dup (15)
Language: Spanish
References: 25
Page: 1-17
PDF size: 423.82 Kb.
ABSTRACT
Introduction: 25 – 50 % of all supernumerary marker chromosomes come from chromosome 15, most are identified as an inversion duplication of 15 (inv dup 15).Objectives: To describe three cases of patients with an inv dup chromosomal marker (15), detected in a different way, who are referred to the cytogenetics laboratory of the National Center for Medical Genetics in Havana for dissimilar causes.
Methods: Conventional cytogenetic analyzes in blood and amniotic fluid were performed by the standardized method in the laboratory, based on the protocols of the international guidelines of the Cytogenetics Laboratory Manual. For molecular cytogenetics analysis, VYSIS probes were used, from ABBOT specifically the probe: LSI SRNPN spectrum green / CEP 15 (D15Z1) spectrum red / LSI PML spectrum orange or another variant of this probe with LSI SRNPN spectrum orange / CEP 15 (D15Z1 ) spectrum green / LSI PML spectrum Orange.
Results: Case I, is detected prenatally by means of a fluorescent in situ hybridization test (FISH) in interphase cells, it presents an inv dup15 that includes the 15q11.2-q13 region. There are no fetal ultrasound abnormalities. The couple decides to continue the pregnancy. The girl currently has psycho-motor retardation. Case II, inv dup 15 was detected in a six-year-old girl, with autism spectrum and intellectual disability. The marker includes the 15q11.2-q13 region. Case III, the marker chromosome is detected in a woman of normal intelligence with repeated spontaneous abortions. The inv dup of 15 extends from the centromere to the 15q11.1 region.
Conclusions: The implications in the phenotype of individuals, with a supernumerary marker of inv dup 15, are given by the inclusion or not of the critical zone of the Prader Willy / Angelman syndromes. The inclusion of this region in the marker causes intellectual disability and other physical abnormalities, without detectable effects on prenatal ultrasound. If the marker does not include this region, it is only heterochromatin, it can influence the correct gametogenesis of the carrier, affecting the fertility of the person.
REFERENCES
Blennow E, Hung B, Kristoffersson U, M Vujic, G Annerén, E Holmberg et al. Swedish survey on extra structurally abnormal chromosomes in 39105 consecutive prenatal diagnoses: prevalence and characterization by fluorescence in situ hybridization. Prenat Diagn. 1994 [acceso:18/04/2018];14:1019. Disponible en: https://obgyn.onlinelibrary.wiley.com/doi/epdf/10.1002/pd.1970141103
Leana-Cox J, Jenkins L, Palmer CG, Plattner R, Sheppard L, Flejter WL, et al. Molecular cytogenetic analysis of inv dup(15) chromosomes, using probes specific for the Prader-Willi/Angelman syndrome region: clinical implications. Am J Hum Genet. 1994 [acceso:4/05/2018];54:748-56. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1918252/pdf/ajhg00050-0020.pdf/?tool=EBI
Leana - Cox J, Jenkins L, Palmer CG, R Plattner, L Sheppard, W L Flejter et al. Molecular cytogenetic analysis of inv dup(15) chromosomes,using probes specifi c for the Prader - Willi/Angelman syndrome region: clinical implications . Am J Hum Genet. 1994 [acceso:5/05/2018]; 54:748. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1918252/pdf/ajhg00050-0020.pdf/?tool=EBI
Méndez-Rosado LA, Molina-Gamboa O, Castelvi-Lopez A, Soriano Torres M, Suárez Mayedo U, García Rodríguez M et al. Características del diagnóstico prenatal por FISH en Cuba. Revista Cubana de Pediatría. 2020 [acceso:12/11/2020];92(2):e822 Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75312020000200003.
Boccaccio I, Glatt-Deeley H, Watrin F, Roeckel N, Lalande M, Muscatelli F: The human MAGEL2gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region. Hum Mol Genet. 1999 [acceso:14/10/2019];8(13):2497-2505. Disponible en: https://academic.oup.com/hmg/article/8/13/2497/651519
MacDonald HR, Wevrick R: The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum Mol Genet. 1997 [acceso:14/08/2019];6(11):1873-8. Disponible en: https://www.academia.edu/9467962/The_necdin_gene_is_deleted_in_Prader_Willi_syndrome_and_is_imprinted_in_human_and_mouse.
Herzing LB, Kim SJ, Cook EH, Jr., Ledbetter DH: The human aminophospholipid-transporting ATPase gene ATP10C maps adjacent to UBE3A and exhibits similar imprinted expression. Am J Hum Genet. 2001 [acceso:17/02/2019];68(6):1501-5. Disponible en: https://www.sciencedirect.com/science/article/pii/S0002929707610611
Hogart A, Nagarajan RP, Patzel KA, Yasui DH, Lasalle JM: 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autismspectrum disorders. Hum Mol Genet. 2007 [acceso:19/09/2019]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934608/pdf/nihms22589.pdf
Vulcani-Fleitas TM, Gil da Silva-López VL, Varella- García M, Maciel- Guerra AT. Infertility and marker chromosomes: application of molecular cytogenetic techiques in a case of inv dup (15). L Appl Genet. 2006 [acceso: 13/08/2021];47(1):89-91. Disponible en: https://link.springer.com/article/10.1007/BF03194605