2020, Number 2
<< Back Next >>
Rev Cub Gen 2020; 13 (2)
Maternal age risk factor on fetal prenatal diagnosis
García GD, Méndez RLA, Barrios MA, Soriano TM, Torriani MP, Castelví LA, García RM, Morales RE, Molina GO, González GN, del Sol GM, Suárez MU, Rodríguez KI, Rodríguez GH, Quintana HD
Language: Spanish
References: 31
Page: 1-23
PDF size: 399.57 Kb.
ABSTRACT
Introduction: Advanced maternal age has been acknowledged as a risk factor for fetal aneuploidies. Among other factors the following are described: ultrasonography findings, family records for chromosomal aberrations and a previously affected child.
Objective: To estimate the frequency of fetal chromosomal abnormalities according to advanced maternal age and others risk factors.
Methods: A descriptive transversal study was performed using 1817 karyotypes from prenatal analysis in amniotic fluids in the period 2017-2018 in the National Medical Genetics Center from Cuba.
Results: Frequency of fetal chromosomal abnormalities was 3.19%. Trisomy 21 and 47,XXY syndrome were more frequent in advanced maternal age pregnant women but not for trisomies 13, 18, 47,XYY, 47,XXX, 45,X syndrome or structural chromosome anomalies.Advanced maternal age factor associated with positive ultrasound, and ultrasound findings solely reached a chromosomal aberration index of 4,23% and 4,22%;and advanced maternal age and advanced paternal age separately 3.30% y 3.33% each one.
Conclusions: Fetal chromosome abnormalities frequency was similar in mothers below and above 35-year-old age. Advanced maternal age pregnant women showed an increased risk for trisomy 21 and 47,XXY syndrome. An increased risk for trisomies 13, 18, 47,XYY, 47,XXX, 45,X syndrome or structural chromosome anomalies was not confirmed. A positive ultrasound in combination with advanced maternal age and positive ultrasound solely were the main factors for fetal chromosomal risk. The predictive value of advanced maternal age solely was confirmed to be the main third index in fetal aneuploidies in cytogenetic prenatal diagnosis.
REFERENCES
Nussbaum RL, McInnes RR, Willard HF. Thompson & Thompson genetics in medicine e-book: Elsevier Health Sciences; 2015. Disponible en: www. sciencedirect. com
Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ, et al. National population based estimates for major birth defects, 2010–2014. Birth defects research. 2019;111(18):1420-35. Disponible en: https://onlinelibrary. wiley. com/doi/abs/10. 1002/bdr2. 1589
Balbuena HR, Teruel BM. Genetics and genomic medicine in Cuba. Molecular Genetics & Genomic Medicine. 2017;5(3):196. Disponible en: https://www. ncbi. nlm. nih. gov/pmc/articles/PMC5441404/
Gonzales PR, Carroll AJ, Korf BR. Overview of clinical cytogenetics. Current Protocols in Human Genetics. 2016;89(1):8. 1. 1-13. DOI: https://doi/abs/10. 1002/0471142905. hg0801s89
Arsham MS, Barch MJ, Lawce HJ. The AGT cytogenetics laboratory manual: John Wiley & Sons; 2017. Disponible en: https://onlinelibrary. wiley. com
McGowan-Jordan J. ISCN 2016: An International System for Human Cytogenomic Nomenclature (2016): Recommendations of the International Standing Committee on Human Cytogenomic Nomenclature Including New Sequence-based Cytogenetic Nomenclature Developed in Collaboration with the Human Genome Variation Society (HGVS) Sequence Variant Description Working Group: Karger; 2016. Disponible en: https:// www. amazon. com
Obstetricians ACo, Gynecologists. Practice bulletin no. 163: screening for fetal aneuploidy. Obstet Gynecol. 2016;127(5):e123-37. Disponible en: https://pubmed. ncbi. nlm. nih. gov/26938574/
Oneda B, Rauch A. Microarrays in prenatal diagnosis. Best Practice & Research Clinical Obstetrics & Gynaecology. 2017;42:53-63. Disponible en: https://www. sciencedirect. com/science/article/abs/pii/S1521693417300081
Levy B, Wapner R. Prenatal diagnosis by chromosomal microarray analysis. Fertility and sterility. 2018;109(2):201-12. Disponible en: https://www. sciencedirect. com/science/article/abs/pii/S0015028218300050
Méndez-Rosado LA, Quiñones O, Molina O, González N, Sol Md, Maceiras L, et al. Antenatal cytogenetic testing in Havana, Cuba. Medicc Review. 2014;16:27-34. Disponible en: https://pubmed. ncbi. nlm. nih. gov/25208117/
Díaz-Véliz Jiménez PA, Vidal Hernández B, Velázquez Martínez T, Sanjurjo Pérez Y, González Santana I. Diagnóstico prenatal citogenético en Cienfuegos: años 2007-2018. Revista Finlay. 2020;10(1):4-11. Disponible en: https://scielo. sld. cu/scielo. php?script=sci_arttext&pid=S2221-24342020000100004
Quintana Hernández D, Hernández Guillama G, Pérez Alvarez I, Dorta García D, Rodríguez Domínguez M. Evaluación del programa de detección prenatal de anomalías cromosómicas mediante estudios citogenéticos. Rev Cienc Méd. 2013; 19(3):292-301 Disponible en: https: http://revcmhabana. sld. cu/index. php/rcmh/article/view/601/1051
Calderio MA, Garcés AC, Martínez ML, Cruz IV, Vazquez JM, Estrada DÁ. Evaluación del programa de detección prenatal de defectos congénitos por ultrasonido en la provincia Granma, 2008-2011. Revista Cubana de Genética Comunitaria. 2012;6(3):32-8. Disponible en: https://www. medigraphic. com/pdfs/revcubgencom/cgc-2012/cgc123e. pdf
Reyes ER, González GKS, Hidalgo AO, Peña YR, Regueiro AF. Resultados de seis años de estudios citogenéticos en líquido amniótico. Revista Electrónica Dr Zoilo E Marinello Vidaurreta. 2015;40(11). Disponible en: https://revzoilomarinello. sld. cu/index. php/zmv/article/view/369
Shi Y, Ma J, Xue Y, Wang J, Yu B, Wang T. The assessment of combined karyotype analysis and chromosomal microarray in pregnant women of advanced maternal age: a multicenter study. Annals of translational medicine. 2019;7(14). Disponible en: https://www. ncbi. nlm. nih. gov/pmc/articles/PMC6694271/
Hassold T, Chiu D. Maternal age-specific rates of numerical chromosome abnormalities with special reference to trisomy. Human genetics. Disponible en: 1985;70(1):11-7. https://link. springer. com/article/10. 1007/BF00389450
Carlson LM, Vora NL. Prenatal diagnosis: screening and diagnostic tools. Obstetrics and Gynecology Clinics. 2017;44(2):245-56. Disponible en: https://www. ncbi. nlm. nih. gov/pmc/articles/PMC5548328/
Kim YJ, Lee JE, Kim SH, Shim SS, Cha DH. Maternal age-specific rates of fetal chromosomal abnormalities in Korean pregnant women of advanced maternal age. Obstetrics & gynecology science. 2013;56(3):160. Disponible en: https://www. ncbi. nlm. nih. gov/pmc/articles/PMC6694271/
Warburton D, Dallaire L, Thangavelu M, Ross L, Levin B, Kline J. Trisomy recurrence: a reconsideration based on North American data. The American Journal of Human Genetics. 2004;75(3):376-85. Disponible en: https://www. sciencedirect. com/science/article/pii/S0002929707633102
Méndez‐Rosado L, Hechavarría‐Estenoz D, de la Torre M, Pimentel‐Benitez H, Hernández‐Gil J, Perez B, et al. Current status of prenatal diagnosis in Cuba: causes of low prevalence of Down syndrome. Prenatal diagnosis. 2014;34(11):1049-54. Disponible en : https://obgyn. onlinelibrary. wiley. com/doi/full/10. 1002/pd. 4421
Lee J. Is age related increase of chromosome segregation errors in mammalian oocytes caused by cohesin deterioration? Reproductive medicine and biology. 2020;19(1):32-41. Disponible en: https://onlinelibrary. wiley. com/doi/full/10. 1002/rmb2. 12299
Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. Mutation Research/Reviews in Mutation Research. 2020:108320. Disponible en : https://www. sciencedirect. com/science/article/abs/pii/S1383574220300405
Capalbo A, Hoffmann ER, Cimadomo D, Maria Ubaldi F, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Human Reproduction Update. 2017;23(6):706-22. Disponible en: https://sci-hub. se/10. 1093/humupd/dmx026
Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Reviews Genetics. 2001;2(4):280-91. Disponible en: https://europepmc. org/article/MED/11283700
Wyrobek A, Aardema M, Eichenlaub-Ritter U, Ferguson L, Marchetti F. Mechanisms and targets involved in maternal and paternal age effects on numerical aneuploidy. Environmental and molecular mutagenesis. 1996;28(3):254-64. Disponible en: https://sci-hub. se/10. 1038/35066065
Thomas NS, Morris JK, Baptista J, Ng BL, Crolla JA, Jacobs PA. De novo apparently balanced translocations in man are predominantly paternal in origin and associated with a significant increase in paternal age. Journal of medical genetics. 2010;47(2):112-5. Disponible en: https://sci-hub. se/10. 1136/jmg. 2009. 069716
Kovaleva N. Examination of rates and spectrums of Robertsonian translocations in the general population and in patients with reproductive disorders. Russian Journal of Genetics. 2018;54(4):489-93. Disponible en: https://sci-hub. se/10. 1134/s1022795418040099
Méndez‐Rosado LA, Lardoeyt‐Ferrer R. High risk for carriers of de novo balanced structural chromosomal aberrations in prenatal diagnosis: Latin America data. Prenatal diagnosis. 2020;40(2):274-5. Disponible en: https://sci-hub. se/https://doi. org/10. 1002/pd. 5600
Jacobs M, Cooper S-A, McGowan R, Nelson SM, Pell JP. Pregnancy outcome following prenatal diagnosis of chromosomal anomaly: a record linkage study of 26,261 pregnancies. PLoS One. 2016;11(12):e0166909. Disponible en: https://pdfs. semanticscholar. org/ec81/b48548e4f4d5d3597b8af347dd3794ba50e8. pdf
Benn P, Borrell A, Chiu RW, Cuckle H, Dugoff L, Faas B, et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenatal diagnosis. 2015;35(8):725-34. Disponible en: https://obgyn. onlinelibrary. wiley. com/doi/full/10. 1002/pd. 4608
Quintana Aguilar J, Quiñones Maza O, Méndez Rosado LA, Lavista González M, González Noa CE, Hernández Pérez G. Resultados del diagnóstico prenatal cromosómico en Ciudad Habana. Revista Cubana de Obstetricia y Ginecología. 1999;25(3):153-8. Disponible en: http://scielo. sld. cu/scielo. php?script=sci_arttext&pid=S0138-600X1999000300003