2021, Number 3
<< Back Next >>
Rev Mex Patol Clin Med Lab 2021; 68 (3)
T cells and NK cell reconstitution after allogeneic hematopoietic stem cell transplantation (HSCT)
Parra-Ortega I, Gaytán-Morales JF, Castorena-Villa I, Mier-Cabrera M, López-Martínez B, Ortiz-Navarrete V, Olvera-Gómez I
Language: Spanish
References: 69
Page: 123-133
PDF size: 299.53 Kb.
ABSTRACT
Hematopoietic stem cell transplantation (HSCT) is the established treatment for children with leukemia that do not respond to chemotherapy, as well as benign alterations. Among the biological processes that generate the success of HSCT is the generation of an efficient immune system, establishing an environment of homeostasis between the different cellular and soluble (cytokines, chemokines) components to control several interactions between the cells that participate in the process. The complete reconstitution of adaptive immunity is often affected by several factors. Some of them are inherent to the transplant, which takes even years to obtain an adequate number of lymphoid cells with optimal functionality. Adaptive immune reconstitution takes a long time, which increases the risk of failing to respond against opportunistic infectious agents. Moreover monitoring the factors that directly influence the success of the graft, T lymphocytes subpopulatios, and NK cells should be quantified. This correlates with the clinical status and the progress in cellular reconstitution allowing the identification of the ideal moment to carry out interventions that accompany the long recovery period. This is in order to contribute to achieving a state of immunocompetence of the individual.
REFERENCES
Thomas E, Blume K, Forman S et al. Thomas' hematopoietic cell transplantation. 3.ª ed. Malden: Blackwell; 2004.
Koning C, Plantinga M, Besseling P et al. Immune reconstitution after allogeneic hematopoietic cell transplantation in children. Biol Blood Marrow Transplant. 2016; 22: 195-206.
Jaime Fagundo JC, Dorticós Balea E, Pavón Morán V et al. Aspectos inmunológicos del trasplante de células progenitoras hematopoyéticas. Rev Cubana Hematol Inmunol Hemoter. 2006; 22(3).
Abbas AK, Lichtman AH, Pillai S. Inmunología Celular y Molecular. 6.ª ed. España: Elsevier; 2008.
Chen BJ, Cui X, Sempowski GD et al. Hematopoietic stem cell dose correlates with the speed of immune reconstitution after stem cell transplantation. Blood. 2004; 103 (11): 4344-4352.
Chao NJ, Liu CX, Rooney B et al. Nonmyeloablative regimen preserves "niches" allowing for peripheral expansion of donor T-cells. Biol Blood Marrow Transplant. 2002; 8: 249-256.
Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol. 2012; 12 (3): 191-200.
Admiraal R, van Kesteren C, Jol-van der Zijde CM et al. Association between anti-thymocyte globulin exposure and CD4+ immune reconstitution in paediatric haemopoietic cell transplantation: a multicentre, retrospective pharmacodynamic cohort analysis. Lancet Haematol. 2015; 2 (5): e194-203.
Pérez-García M, Olaya-Vargas A, Del Campo-Martínez A et al. Reconstitución inmunológica en niños receptores de trasplante de células progenitoras hematopoyéticas. Alerg Asma Inmunol Pediatr. 2012; 21 (2): 72-79.
Krenger W, Blazar BR, Hollander GA. Thymic T-cell development in allogeneic stem cell transplantation. Blood: 2011; 117: 6768-6776.
Huttunen P, Taskinen M, Siitonen S et al. Impact of very early CD4(+)/CD8(+) T cell counts on the occurrence of acute graft-versus-host disease and NK cell counts on outcome after pediatric allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2015; 62 (3): 522-528.
Szanto CL, Langenhorst J, de Koning C et al. Predictors for autoimmune cytopenias after allogeneic hematopoietic cell transplantation in children. Biol Blood Marrow Transplant. 2020; 26: 114-122.
Eyrich M, Leiler C, Lang P el al. Prospective comparison of immune reconstitution in pediatric recipients of positively selected CD34+ peripheral blood stem cells from unrelated donors vs recipients of unmanipulated bone marrow from related donors. Bone Marrow Transp. 2003; 32: 379-390.
Melenhorst JJ, Tian X, Xu D et al. Cytopenia and leukocyte recovery shape cytokine fluctuations after myeloablative allogeneic hematopoietic stem cell transplantation. Haematologica. 2012; 97: 867-873.
Sugita K, Soiffer RJ, Murray C et al. The phenotype and reconstitution of immunoregulatory T cell subsets after T cell depleted allogeneic and autologous bone marrow transplantation. Transplantation. 1994; 57: 1465-1473.
Roux E, Dumont Girard F, Starobinski M et al. Recovery of immune reactivity after T-cell-depleted bone marrow transplantation depends on thymic activity. Blood. 2000; 96: 2299-2303.
Pelayo R, Santa J, Velasco I. Células troncales y medicina regenerativa. 1.a ed. México: Editores Buena Onda; 2011.
Jagannathan-Bogdan M, Zon LI. Hematopoiesis. Development. 2013; 140: 2463-2467.
Huang Y, Elliott MJ, Yolcu ES et al. Characterization of human CD8(+)TCR(-) facilitating cells in vitro and in vivo in a NOD/SCID/IL2rγ(null) mouse model. Am J Transplant. 2016; 16: 440-453.
Lataillade JJ, Clay D, Bourin P et al. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood. 2002; 99: 1117-1129.
Karlsson R, Engstrom M, Jonsson M et al. Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes. J Leukoc Biol. 2003; 74: 923-931.
Broxmeyer HE, Cooper S, Kohli L et al. Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo. J Immunol. 2003; 170: 421-429.
Mohle R, Bautz F, Rafii S et al. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood. 1998; 91: 4523-4530.
Ildstad ST, Leventhal J, Wen Y et al. Facilitating cells: translation of hematopoietic chimerism to achieve clinical tolerance. Chimerism. 2015; 6: 33-39.
Dekker L, de Koning C, Lindemans C et al. Reconstitution of T cell subsets following allogeneic hematopoietic cell transplantation. cancers (basel). 2020; 12: 1974-1992.
Yoshihara H, Arai F, Hosokawa K et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007; 1: 685-697.
Sun J, Ramos A, Chapman B et al. Clonal dynamics of native haematopoiesis. Nature. 2014; 514: 322-327.
Pietras EM, Reynaud D, Kang YA et al. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell. 2015; 17: 35-46.
Biron CA, Nguyen KB, Pien GC et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol. 1999; 17: 189-220.
Benny J. Chen, Xiuyu Cui et al. Chao Hematopoietic stem cell dose correlates with the speed of immune reconstitution after stem cell transplantation. Blood. 2004; 103: 4344-4352.
Cho BK, Wang C, Sugawa S et al. Functional differences between memory and naive CD8 T cells. Proc Natl Acad Sci 1999; 96: 2976-2981.
Guillaume T, Rubinstein DB, Symann M. Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood. 1998; 92: 1471-1490.
Brenner MK, Wimperis JZ, Reittie JE. Recovery of immunoglobulin isotypes following T cell depleted allogeneic bone marrow transplantation.Br J Haematol. 1986; 64: 125-132.
Storek J. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood 2001; 97: 3380-3389.
Small TN, Keever CA, Weiner-Fedus S et al. B cell differentiation following autologous, conventional, or T cell depleted bone marrow transplantation: A recapitulation of normal B cell ontogeny. Blood. 1990; 76: 1647-1656.
Thomas ED, Blume K, Forman SJ. Bacterial infections in hematopoietic cell transplantation. Blackwell Science. 1999: 537-554.
Ogonek J, Kralj Juric M, Ghimire S et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2016; 7: 507-522.
Chen J, Guan L, Tang L et al. T helper 9 cells: a new player in immune-related diseases. DNA Cell Biol. 2019; 38: 1040-1047.
Riddell J, Gazit R, Garrison BS et al. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell. 2014; 157: 549-564.
Ivanovs A, Rybtsov S, Anderson RA et al. Identification of the niche and phenotype of the first human hematopoietic stem cells. Stem Cell Rep. 2014; 2: 449-456.
Piemontese S, Ciceri F, Labopin M et al. A survey on unmanipulated haploidentical hematopoietic stem cell transplantation in adults with acute leukemia. Leukemia. 2015; 29: 1069-1075.
Luckheeram RV, Zhou R, Verma AD et al. CD4?T cells: differentiation and functions. Clin Dev Immunol. 2012; 2012: 925135.
Olkinuora H, von Willebrand E, Kantele JM et al. The impact of early viral infections and graft-versus-host disease on immune reconstitution following paediatric stem cell transplantation. Scand J Immunol. 2011; 73: 586-593.
Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989; 7: 145-173.
Storek J. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood 2001; 97: 3380-3389.
Pallmer K, Oxenius A. Recognition and regulation of T cells by NK cells. Front Immunol. 2016; 7: 251.
Dutton RW, Bradley LM, Swain SL. T cell memory. Annu Rev Immunol. 1998; 16: 201-223.
Simoni Y, Fehlings M, Kloverpris HN et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity. 2017; 46 (1): 148-161.
Williams KM, Hakim FT, Gress RE. T cell immune reconstitution following lymphodepletion. Semin Immunol. 2007; 19: 318-330.
Ferrara JLM, Levy R, Chao NJ. Pathophysiologic mechanism of acute graft-vs-host disease. Bone Marrow Transplant. 1999; 25: 347-356.
Berzins SP, Uldrich AP, Sutherland JS et al. Thymic regeneration: teaching an old immune system new tricks. Trends Mol Med. 2002; 8: 469-476.
Toka FN, Suvas S, Rouse BT. CD4+ CD25+ T cells regulate vaccinegenerated primary and memory CD8+ T-cell responses against herpes simplex virus type 1. J Virol. 2004; 78: 13082-13089.
Abusarah J, Khodayarian F, Cui Y et al. Thymic Rejuvenation: are we there yet?. En: D'Onofrio G. Gerontology. 1.ª ed. 2018.
Parra-Ortega I, Salceda-Rangel KS, Nájera-Martínez N et al. Determinación y cuantificación de subpoblaciones de linfocitos T y células natural killer en sangre periférica de individuos sanos por citometría de flujo. Bol Med Hosp Infant Mex. 2019; 76: 66-78.
Goronzy JJ, Fang F, Cavanagh MM et al. Naive T cell maintenance and function in human aging. J Immunol. 2015; 194 (9): 4073-4080.
Parra-Ortega I, Nájera-Martínez N, Gaytán-Morales F et al. Natural killer cell reconstitution after hematopoietic stem-cell transplantation in children. Gac Med Mex. 2020; 156: 187-193.
Eyrich M, Lang P, Lal S, et al. Prospective analysis of the pattern of immune reconstitution in a paediatric cohort following transplantation of positively selected human leucocyte antigen-disparate haematopoietic stem cells from parental donors. Br J Haematol. 2001; 114: 422-432.
Gaytán-Morales JF, Castorena-Villa I, Cortés-Flores DC et al. Respiratory viral infections in pediatric patients with hematopoietic stem cell transplantation. Bol Med Hosp Infant Mex. 2021; 78: 191-199.
Stacy S, Krolick KA, Infante AJ et al. Immunological memory and late onset autoimmunity. Mech Ageing Dev. 2002; 123 (8): 975-985.
Stephanie JL. New approaches for preventing and treating chronic graft-versus-host disease. Blood. 2005; 11: 4200-4206.
Farag S, Fehniger L. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood. 2002; 10: 1935-1947.
Booth C, Lawson S, Veys P. The current role of T cell depletion in paediatric stem cell transplantation. Br J Haematol. 2013; 162: 177-190.
Baron F, Labopin M, Niederwieser D et al. Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia: a report from the acute leukemia working party of the european group for blood and marrow transplantation. Leukemia. 2012; 26: 2462-2468.
Tsimberidou AM, Stavroyianni N, Viniou N et al. The hellenic cooperative group: comparison of allogeneic stem cell transplantation, high-dose cytarabine, and autologous peripheral stem cell transplantation as postremission treatment in patients with de novo acute myelogenous leukemia. Cancer. 2003; 97: 1721-1731.
Weisdorf D, Ruiz-Arguelles GJ, Srivastava A et al. Economic challenges in hematopoietic cell transplantation: how will new and established programs face the growing costs? Biol Blood Marrow Transplant. 2017: 11; 1815-1816.
Griffith AV, Fallahi M, Nakase H et al. Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation. Immunity. 2009; 31 (6): 999-1009.
Ruggiu M, Bedossa P, Rautou PE, Bertheau P, Plessier A, Peffault de Latour R et al. Utility and Safety of Liver Biopsy in Patients with Undetermined Liver Blood Test Anomalies after Allogeneic Hematopoietic Stem Cell Transplantation: A Monocentric Retrospective Cohort Study. Biol Blood Marrow Transplant. 2018; 24 (12): 2523-2531. doi: 10.1016/j.bbmt.2018.07.037.
González-Llano O, González-López EE, Ramírez-Cázares AC et al. Haploidentical peripheral blood stem cell transplantation with posttransplant cyclophosphamide in children and adolescents with hematological malignancies. Pediatr Blood Cancer. 2016; 11: 2033-2037.
Martínez-Laperche C, Buces E, Aguilera-Morillo MC et al. A novel predictive approach for GVHD after allogeneic SCT based on clinical variables and cytokine gene polymorphisms. Blood Adv. 2018; 14: 1719-1737.