2022, Number 1
<< Back Next >>
Dermatología Cosmética, Médica y Quirúrgica 2022; 20 (1)
Neutrophilic dermatoses associated to monogenic autoinflammatory syndromes
Giraldo LN, Velásquez MM
Language: Spanish
References: 62
Page: 67-77
PDF size: 585.78 Kb.
ABSTRACT
Neutrophilic dermatoses are a heterogeneous group of inflammatory
skin diseases characterized on histology by intense
neutrophilic infiltrate in the epidermis, dermis or hypodermis
without evidence of infection. They are caused by the increase
in proinflammatory cytokines and chemokines that lead to the
recruitment of immune cells in the tissues, inflammation and
development of lesions in the skin, other organs and symptoms
of systemic inflammation.
There are monogenic autoinflammatory syndromes with
neutrophilic dermatosis-like manifestations generated by mutants
in protein genes that are part of the innate immune system
such as components of the inflammasome, keratinocyte
proteins such as card-14, and deregulation of signaling pathways
such as il-36.
This article aims to describe the molecular pathways that
give rise to monogenic autoinflammatory syndromes that
manifest as neutrophilic dermatosis and often to describe their
clinical characteristics.
REFERENCES
Nelson CA, Stephen S, Ashchyan HJ, James WD, Micheletti RG y Rosenbach M, Neutrophilic dermatoses pathogenesis, Sweet syndrome, neutrophilic eccrine hidradenitis, and Behçet disease, Am Acad Dermatology 2018; 987-1006. Disponible en: https://doi.org/10.1016/j. jaad.2017.11.064.
Rosmaninho A, Carvalho S, Lobo I. Neutrophilic dermatoses, EmjreviewsCom 2014; 77-85. Disponible en: http://emjreviews.com/wp-content/ uploads/Neutrophilic-Dermatoses-Revisited.pdf.
Maalouf D, Battistella M y Bouaziz JD, Neutrophilic dermatosis: disease mechanism and treatment, Current Opinion in Hematology 2015; 22:23-9.
Marzano AV, Borghi A, Wallach D y Cugno M, A comprehensive review of neutrophilic diseases, Clin Rev Allerg Immunol 2018; 114-30.
Marzano AV, Ortega-Loayza AG, Heath M, Morse D, Genovese G y Cugno M, Mechanisms of inflammation in neutrophil-mediated skin diseases, Frontiers in Immunology 2019; 10.
McGonagle D y McDermott MF, A proposed classification of the immunological diseases, plos Med 2006; 3(8):1242-8.
Satoh TK, Mellett M, Contassot E y French LE, Are neutrophilic dermatoses autoinflammatory disorders?, British Journal of Dermatology 2018, 178:603-13.
Shwin KW, Lee CR y Goldbach-Mansky R, Dermatologic manifestations of monogenic autoinflammatory diseases, Dermatol Clin 2017; 35(1):2 1-38. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/27890235.
Martinon F, Burns K y Tschopp J, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proil-β, Mol Cell 2002; 10(2):417-26.
Gurung P y Kanneganti TD, Feature review autoinflammatory skin disorders: the inflammasome in focus, Trends Mol Med 2016; 22(7):545- 64. Disponible en: http://dx.doi.org/10.1016/j.molmed.2016.05.003.
Man SM y Kanneganti TD, Converging roles of caspases in inflammasome activation, cell death and innate immunity, Nature Reviews Immunology 2016; 16:7-21.
Groslambert M y Py BF, Spotlight on the nlrp3 inflammasome pathway, Journal of Inflammation Research 2018; 11:359-74.
Evavold CL y Kagan JC, Inflammasomes: threat-assessment organelles of the innate immune system, Immunity 2019. Disponible en: https:// linkinghub.elsevier.com/retrieve/pii/S1074761319303310.
Song N, Liu ZS, Xue W, Bai ZF, Wang QY, Dai J et al., nlrp3 phosphorylation is an essential priming event for inflammasome activation, Mol Cell 2017; 68(1):185-197.
Ozkurede VU y Franchi L, Immunology in clinic review series; focus on autoinflammatory diseases: role of inflammasomes in autoinflammatory syndromes, Clin Exp Immunol 2012; 167(3):382-90.
Pellegrini C, Antonioli L, López-Castejón G, Blandizzi C y Fornai M, Canonical and non-canonical activation of nlrp3 inflammasome at the crossroad between immune tolerance and intestinal inflammation, Frontiers in Immunology 2017; 8.
Man SM, Karki R y Kanneganti TD, Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases, Immunological Reviews 2017; 277:61-75.
Heilig R y Broz P, Function and mechanism of the pyrin inflammasome, European Journal of Immunology 2018; 48:230-8.
Schnappauf O, Chae JJ, Kastner DL y Aksentijevich I, The pyrin inflammasome in health and disease, Front Immunol 2019; 7:10.
Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA et al., Pyrin binds the pstpip1/cd2bp1 protein, defining familial Mediterranean fever and papa syndrome as disorders in the same pathway, Proc Natl Acad Sci 2003; 100(23):13501-6.
Beer HD, Contassot E y French LE, The inflammasomes in autoinflammatory diseases with skin involvement, J Invest Dermatol 2014; 134(7):1805-10.
Dinarello CA, Overview of the il-1 family in innate inflammation and acquired immunity, Immunological Reviews 2018; 281:8-27.
Moghaddas F y Masters SL, Monogenic autoinflammatory diseases: cytokinopathies, Cytokine 2015; 74:237-46.
Owen JA, Punt J, Stranford SA y Jones PP, Receptores y señalización: citocinas y quimiocinas. En kuby Inmunología, 7ª ed., Nueva York, Mc- Graw-Hill Education, 2016. Disponible en: http://accessmedicina.mhmedical. com/content.aspx?aid=1137174760.
Martorana D, Bonatti F, Mozzoni P, Vaglio A y Percesepe A, Monogenic autoinflammatory diseases with mendelian inheritance: genes, mutations, and genotype/phenotype correlations, Frontiers in Immunology 2017; 8.
De Jesús AA y Goldbach-Mansky R, Genetically defined autoinflammatory diseases, Oral Dis 2016; 22(7):591-604.
Ito S, Hara Y y Kubota T, card8 is a negative regulator for nlrp3 inflammasome, but mutant nlrp3 in cryopyrin-associated periodic syndromes escapes the restriction, Arthritis Res Ther 2014; 16(1).
Velásquez MM, Jaramillo C, Gallego M y Sierra J, Criopirinopatías: ¿qué son?, ¿cómo detectarlas? y ¿cuál es el enfoque de su tratamiento?, Rev la Asoc Colomb Dermatología y Cirugía Dermatológica 2019; 27(2):108-27. Disponible en: https://revista.asocolderma.org.co/index. php/asocolderma/article/view/37.
Hernández-Rodríguez J, Ruiz-Ortiz E y Yagüe J, Monogenic autoinflammatory diseases: general concepts and presentation in adult patients. General concepts, Med Clin (Barcelona) 2018; 150. Disponible en: http://fmf.igh.cnrs.fr/ISSAID/infevers.
Kuemmerle-Deschner JB, Pathogenesis, presentation and treatment of an autoinflammatory disease. En Seminars in immunopathology, vol. 37, Springer Verlag, 2015, pp. 377-85.
Tripathi SV y Leslie KS, Autoinflammatory diseases in dermatology. caps, traps, hids, fmf, Blau, candle, Dermatologic Clinics 2013; 31:387- 404.
Aróstegui JI, Enfermedades autoinflamatorias sistémicas hereditarias, Reumatología Clínica 2011; 7:45-50.
Kuemmerle-Deschner JB, Ozen S, Tyrrell PN, Kone-Paut I, Goldbach- Mansky R, Lachmann H et al., Diagnostic criteria for cryopyrin-associated periodic syndrome (caps), Ann Rheum Dis 2017; 76(6):942-7.
Fenini G, Contassot E y French LE, Potential of il-1, il-18 and inflammasome inhibition for the treatment of inflammatory skin diseases, Frontiers in Pharmacology 2017; 8.
De Koning HD, Van Gijn ME, Stoffels M, Jongekrijg J, Zeeuwen PL, Elferink MG et al., Myeloid lineage-restricted somatic mosaicism of nlrp3 mutations in patients with variant Schnitzler syndrome, J Allergy Clin Immunol 2015; 135(2):561-4.
Gusdorf L y Lipsker D, Schnitzler syndrome: a review, Current Rheumatology Reports 2017; 19.
De Sá DC y Festa Neto C, Inflammasomes and dermatology, An Bras Dermatol 2016; 91(5):566-78.
Moghaddas F, Llamas R, De Nardo D, Martínez-Banaclocha H, Martínez- García JJ, Mesa-del-Castillo P et al., A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further de fines 14-3-3 binding of pyrin and distinction to familial Mediterranean fever, Ann Rheum Dis 2017; 76(12):2085-94.
Masters SL, Lagou V, Jéru I, Baker PJ, Van Eyck L, Parry DA et al., Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation, Sci Transl Med 2016; 8(332).
Naik HB y Cowen EW, Autoinflammatory pustular neutrophilic diseases, Dermatologic Clinics 2013; 31:405-25.
Hernández-Ostiz S, Prieto-Torres L, Xirotagaros G, Noguera-Morel L, Hernández-Martín y Torrelo A, Autoinflammatory diseases in pediatric dermatology. Part 1: Urticaria-like syndromes, pustular syndromes, and mucocutaneous ulceration syndromes, Actas Dermo-Sifiliograficas 2017; 108:609-19.
Smith EJ, Allantaz F, Bennett L, Zhang D, Gao X, Wood G et al., Clinical, molecular, and genetic characteristics of papa syndrome: a review, Curr Genomics 2010; 11(7):519-27.
Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J, Van Royen-Kerkhoff A et al., An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist, N Engl J Med 2009; 360(23):2426-37.
Jesús AA, Osman M, Silva CA, Kim PW, Pham TH, Gadina M et al., A novel mutation of il1rn in the deficiency of interleukin-1 receptor antagonist syndrome: description of two unrelated cases from Brazil, Arthritis Rheum 2011; 63(12):4007-17.
Marzano AV, Damiani G, Genovese G y Gattorno M, A dermatologic perspective on autoinflammatory diseases, Clin Exp Rheumatol 2018; 36 Suppl 1(1):32-8. Disponible en: http://www.ncbi.nlm.nih.gov/ pubmed/29742056.
Azizi G, Khadem Azarian S, Nazeri S, Mosayebian A, Ghiasy S, Sadri G et al., Monogenic auto-inflammatory syndromes: a review of the literatura, Iran J Allergy Asthma Immunol 2016; 15(6):430-44. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/28129677.
Dinarello C, Arend W, Sims J, Smith D, Blumberg H, O’Neill L et al., il-1 family nomenclature, Nature Immunology 2010; 11:973.
Buhl AL y Wenzel J, Interleukin-36 in infectious and inflammatory skin diseases, Frontiers in Immunology 2019; 10.
Walsh PT y Fallon PG, The emergence of the il-36 cytokine family as novel targets for inflammatory diseases, Annals of the New York Academy of Sciences 2016; 1417:23-34.
Chan TC, Hawkes JE y Krueger JG, Interleukin 23 in the skin: role in psoriasis pathogenesis and selective interleukin 23 blockade as treatment, Ther Adv Chronic Dis 2018; 9(5):111-9.
Towne JE, Renshaw BR, Douangpanya J, Lipsky BP, Shen M, Gabel CA et al., Interleukin-36 (il-36) ligands require processing for full agonist (il-36α, il-36β, and il-36γ) or antagonist (il-36ra) activity, J Biol Chem 2011; 286(49):42594-602.
Gresnigt MS y Van de Veerdonk FL, Biology of il-36 cytokines and their role in disease, Seminars in Immunology 2013; 25:458-65.
Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei XY, Fraitag S et al., Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis, N Engl J Med 2011; 365(7):620-8.
Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH, Pullabhatla V et al., Mutations in il36rn/il1f5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis, Am J Hum Genet 2011; 89(3):432-7.
Rossi-Semerano L, Piram M, Chiaverini C, De Ricaud D, Smahi A y Koné-Paut I, First clinical description of an infant with interleukin- 36-receptor antagonist deficiency successfully treated with anakinra, Pediatrics 2013; 132(4).
Bertin J, Wang L, Guo Y, Jacobson MD, Poyet JL, Srinivasula SM et al., card11 and card14 are novel caspase recruitment domain (card)/ membrane-associated guanylate kinase (maguk) family members that interact with bcl10 and activate nf-κb, J Biol Chem 2001; 276(15): 11877-82.
Juilland M y Thome M, Holding all the cards: how malt1 controls carma/card-dependent signaling, Frontiers in Immunology 2018; 9:1927.
Scudiero I, Zotti T, Ferravante A, Vessichelli M, Vito P y Stilo R, Alternative splicing of carma2/card14 transcripts generates protein variants with differential effect on nf-κb activation and endoplasmic reticulum stress-induced cell death, J Cell Physiol 2011; 226(12):3121-31. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21302310.
Schmitt A, Grondona P, Maier T, Brändle M, Schönfeld C, Jäger G et al., malt1 protease activity controls the expression of inflammatory genes in keratinocytes upon zymosan stimulation, J Invest Dermatol 2016; 136(4):788-97.
Van Nuffel E, Schmitt A, Afonina IS, Schulze-Osthoff K, Beyaert R y Hailfinger S, card14-mediated activation of paracaspase malt1 in keratinocytes: implications for psoriasis, Journal of Investigative Dermatology 2017; 137:569-75.
Abul Abbas AH y Lichtman SP, Inmune receptors and signal transduction. En Inmunología celular y molecular, cap. 7, 9ª ed., 2018.
Jordan CT, Cao L, Roberson EDO, Pierson KC, Yang CF, Joyce CE et al., psors2 is due to mutations in card14, Am J Hum Genet 2012; 90(5):784-95.