2020, Number 3
<< Back Next >>
MEDICC Review 2020; 22 (3)
COVID-19 Forecasts for Cuba Using Logistic Regression and Gompertz Curves
Medina-Mendieta JF, Cortés-Cortés M, Cortés-Iglesias M
Language: English
References: 37
Page: 32-39
PDF size: 985.70 Kb.
ABSTRACT
INTRODUCTION On March 11, 2020, WHO declared COVID-19 a
pandemic and called on governments to impose drastic measures
to fi ght it. It is vitally important for government health authorities and
leaders to have reliable estimates of infected cases and deaths in
order to apply the necessary measures with the resources at their
disposal.
OBJECTIVE Test the validity of the logistic regression and Gompertz
curve to forecast peaks of confi rmed cases and deaths in Cuba, as
well as total number of cases.
METHODS An inferential, predictive study was conducted using logistic
and Gompertz growth curves, adjusted with the least squares
method and informatics tools for analysis and prediction of growth in
COVID-19 cases and deaths. Italy and Spain—countries that have
passed the initial peak of infection rates—were studied, and it was
inferred from the results of these countries that their models were applicable
to Cuba. This hypothesis was tested by applying goodnessof-
fi t and signifi cance tests on its parameters.
RESULTS Both models showed good fi t, low mean square errors, and
all parameters were highly signifi cant.
CONCLUSIONS The validity of models was confi rmed based on logistic
regression and the Gompertz curve to forecast the dates of peak
infections and deaths, as well as total number of cases in Cuba.
REFERENCES
Abreu Pérez MR, Gomez Tejeda JJ, Diéguez Guach RA. Características clínico-epidemiológicas de la COVID-19. Rev Habanera Cienc Médicas. 2020;19(2):3254. Spanish.
Saez M, Tobias A, Varga D, Barceló MA. Effectiveness of the measures to fl atten the epidemic curve of COVID-19. The case of Spain. Sci Total Environ. 2020;727:138761. doi:10.1016/j.scito tenv.2020.138761.
Ministry of Public Health (CU). Protocolo de Actuación Nacional para la COVID-19 Versión 1.4 [Internet]. Havana: Ministry of Public Health (CU); 2020 May [cited 2020 Jun 13]. 131 p. Available at: http://fi les.sld.cu/editorhome/fi les/2020/05/MIN SAP_Protocolo-de-Actuaci%C3%B3n-Nacional -para-la-COVID-19_versi%C3%B3n-1.4_mayo -2020.pdf. Spanish.
Li C, Chen LJ, Chen X, Zhang M, Pang CP, Chen H. Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020. Eurosurveillance. 2020 Mar 12;25(10):1–5.
Yang Z, Zeng Z, Wang K, Wong S-S, Liang W, Zanin M, et al. Modifi ed SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis. 2020;12(3):165–74.
Bizet NC, de Oca ACM. Modelos SIR modifi cados para la evolución del COVID19. ArXiv Prepr ArXiv200411352 [Internet]. 2020 Apr 23 [cited 2020 Jun 13]. Available at: https://arxiv.org/ pdf/2004.11352
Pérez Rodríguez R, Curra Sosa DA, Almaguer Mederos LE. Análisis preliminar de modelos SIRD para la predicción de la COVID-19: caso de la provincia de Holguín. An Acad Cienc Cuba. 2020;10(2). Spanish.
Vidal Ledo MJ, Guinovart Díaz R, Baldoquín Rodríguez W, Valdivia Onega NC, Morales Lezca W. Modelos matemáticos para el control epidemiológico. Educ Médica Super. 2020 May 30;34(2). Spanish.
Deb S, Majumdar M. A time series method to analyze incidence pattern and estimate reproduction number of COVID-19. ArXiv.org [Internet]. 2020 Mar 24 [cited 2020 Jun 13]. Available at: https://arxiv.org/pdf/2003.10655
Wang CJ, Ng CY, Brook RH. Response to COVID- 19 in Taiwan: big data analytics, new technology, and proactive testing. JAMA. 2020 Mar 3;323(14):1341–2.
Hu Z, Ge Q, Jin L, Xiong M. Artifi cial intelligence forecasting of COVID-19 in China. ArXiv.org [Internet]. 2020 Mar 1 [cited 2020 Apr 22]. Available at: https://arxiv.org/pdf/2002.07112
Zhou C, Su F, Pei T, Zhang A, Du Y, Luo B, et al. COVID-19: Challenges to GIS with Big Data. Geogr Sustain. 2020 Mar 1;1(1):77–87.
Simón Mínguez F. Procesos de difusión Logístico y Gompertz. Métodos numéricos clásicos en la estimación paramétrica [thesis]. [Granada]: Granada University (ES); 2016. Spanish.
Batista M. Estimation of the fi nal size of the COVID-19 epidemic. MedRxiv BioRxiv [Internet]. 2020 Feb 28 [cited 2020 Jun 13]; [11 p.]. Available at: https://www.medrxiv.org/content/10.1101/202 0.02.16.20023606v5.full.pdf. Spanish.
Morais AF. Logistic approximations used to describe new outbreaks in the 2020 COVID-19 pandemic. ArXiv:200311149 [Internet]. 2020 Mar 24 [cited 2020 Jun 13]; [9 p.]. Available at: https:// arxiv.org/pdf/2003.11149
Tátrai D, Várallyay Z. COVID-19 epidemic outcome predictions based on logistic fi tting and estimation of its reliability. ArXiv:2003.14160[qbio. PE] [Internet]. 2020 Mar 31 [cited 2020 Jun 13]; [15 p.]. Available at: http://arxiv.org/ abs/2003.14160
Wu K, Darcet D, Wang Q, Sornette D. Generalized logistic growth modeling of the COVID-19 outbreak in 29 provinces in China and in the rest of the world. ArXiv200305681 Phys Q-Bio Stat [Internet]. 2020 May 9 [cited 2020 Jun 13]; [34 p.]. Available at: http://arxiv.org/abs/2003.05681
Qeadan F, Honda T, Gren LH, Dailey-Provost J, Benson LS, VanDerslice JA, et al. Naive forecast for COVID-19 in Utah based on the South Korea and Italy models-the fl uctuation between two extremes. Int J Environ Res Public Health. 2020 Apr 16;17(8):2750.
Mazurek J, Neničková Z. Predicting the number of total COVID-19 cases in the USA by a Gompertz curve [Internet]. 2020 Apr 18 [cited 2020 Jun 13]. Available at: http://rgdoi.net/10.13140/ RG.2.2.19841.81761
Mazurek J, Perez Rico C, Fernandez Garcia C. Forecasting the number of COVID-19 cases and deaths in the World, UK, Russia and Turkey by the Gompertz curve [Internet]. 2020 May 4 [cited 2020 Jun 13]. Available at: https:// www.researchgate.net/profile/Jiri_Mazurek2/ publication/341132093_Forecasting_the_num ber_of_COVID-19_cases_and_deaths_in_the_ World_UK_Russia_and_Turkey_by_the_Gom pertz_curve/links/5eb042d6299bf18b9594bc43/ Forecasting-the-number-of-COVID-19-cases -and-deaths-in-the-World-UK-Russia-and-Tur key-by-the-Gompertz-curve.pdf
Razzak WA. Modelling New Zealand COVID-19 infection rate, and the effi cacy of social distancing policy. Discussion paper 20.04 [Internet]. Wellington (NZ): Massey University Business School; 2020 Mar [cited 2020 Jun 13]. 8 p. Available at: http://econfi n.massey.ac.nz/school/publi cations/discuss/2020/DP2004.pdf
Jia L, Li K, Jiang Y, Guo X. Prediction and analysis of Coronavirus Disease 2019. ArXiv200305447 Q-BioPE [Internet]. 2020 Mar 16 [cited 2020 Apr 22]; [19 p.]. Available at: https:// arxiv.org/abs/2003.05447
Villalobos-Arias M. Estimation of population infected by COVID-19 using regression Generalized logistics and optimization heuristics. ArXiv200401207 Q-Bio [Internet]. 2020 Apr 2 [cited 2020 Apr 22]; [16 p.]. Available at: http://arxiv.org/ abs/2004.01207
Milhinhos A, Costa PM. On the progression of COVID19 in Portugal: a comparative analysis of active cases using non-linear regression. medRxiv [Internet]. 2020 May 6 [cited 2020 Jun 13]. 8 p. Available at: http://medrxiv.org/lookup/ doi/10.1101/2020.05.02.20088856
Dattoli G, Di Palma E, Licciardi S, Sabia E. A note on the evolution of COVID-19 in Italy. ArXiv200308684 Q-Bio [Internet]. 2020 Mar 19 [cited 2020 Jun 13]. Available at: http://arxiv.org/ abs/2003.08684
Bauckhage C. The Math of Epidemic Outbreaks and Spread (Part 3) Least Squares Fitting of Gompertz Growth Models [Internet]. 2020 [cited 2020 Jun 13]. Available at: https://www .researchgate.net/profile/Christian_Bauckhage/ publication/340594164_The_Math_of_Epi demic_Outbreaks_and_Spread_Part_3_Least_ Squares_Fitting_of_Gompertz_Growth_Models/ links/5e934c074585150839d95188/The-Math-of -Epidemic-Outbreaks-and-Spread-Part-3-Least -Squares-Fitting-of-Gompertz-Growth-Models.pdf
Rodrigues Silva R, Velasco WD, Marques W da S, Tibirica CAG. A Bayesian analysis of the total number of cases of the COVID 19 when only a few data is available. A case study in the state of Goias, Brazil. medRxiv [Internet]. 2020 Apr 22 [cited 2020 Jun 13]; [14 p.]. Available at: http://medrxiv. org/lookup/doi/10.1101/2020.04.19.20071852
Dutra CM. Non-Linear fi tting of Sigmoidal Growth Curves to predict a maximum limit to the total number of COVID-19 cases in the United States. medRxiv [Internet]. 2020 Apr [cited 2020 Jun 13]; [7 p.]. Available at: http://medrxiv.org/lookup/ doi/10.1101/2020.04.22.20074898
Attanayake AMCH, Perera S, Jayasinghe S. Phenomenological modelling of COVID-19 epidemics in Sri Lanka, Italy and Hebei Province of China. Infectious Diseases (except HIV/ AIDS) [Internet]. 2020 May 8 [cited 2020 Jun 13]; [12 p.]. Available at: http://medrxiv.org/lookup/ doi/10.1101/2020.05.04.20091132
Ahmadi A, Fadaei Y, Shirani M, Rahmani F. Modeling and Forecasting Trend of COVID-19 Epidemic in Iran until May 13, 2020. medRxiv [Internet]. 2020 Mar [cited 2020 Jun 13]. Available at: http://medrxiv.org/lookup/ doi/10.1101/2020.03.17.20037671
Winsor CP. The Gompertz curve as a growth curve. Proc Natl Acad Sci U S A. 1932 Jan;18(1):1–8.
Humanitarian Data Exchange [Internet]. Novel Coronavirus (COVID-19) Cases Data [Internet]. New York: United Nations Offi ce for the Coordination of Humanitarian Affairs (OCHA); c2020 [cited 2020 Apr 22]. Available at: https://data.humdata .org/dataset/novel-coronavirus-2019-ncov-cases
Maxima, a Computer Algebra System [Internet]. Massachusetts: Massachusetts Institute of Technology (MIT);c2020 [cited 2020 Apr 22]. Available at: http://maxima.sourceforge.net/
R: The R Project for Statistical Computing [Internet]. [place unspecifi ed]: R: The R Project for Statistical Computing; 2020 [cited 2020 Apr 22]. Available at: https://www.r-project.org/
EFE. Italia llegó al pico de contagios, según Instituto de Sanidad. El Tiempo [Internet]. 2020 Mar 30 [cited 2020 Apr 22];Internacional:[about 3 p.]. Available at: https://www.eltiempo.com/mundo/ europa/italia-llego-al-pico-de-contagios-479168. Spanish.
McMurtry A. España «llega al pico» al registrar más de 18.000 muertes por COVID-19 Agencia Anadolu [Internet]. Ankara: Agencia Anadolu; 2020 Apr 15 [cited 2020 Apr 22]. Available at: https://www.aa.com.tr/es/mundo/españa-llega -al-pico-al-registrar-más-de-18000-muertes-por -COVID-19/1805168. Spanish.
Neill JW. Testing for lack of fi t in nonlinear regression. Ann Stat. 1988 Jun;16(2):733–40.