2020, Número 3
<< Anterior Siguiente >>
MEDICC Review 2020; 22 (3)
COVID-19 Forecasts for Cuba Using Logistic Regression and Gompertz Curves
Medina-Mendieta JF, Cortés-Cortés M, Cortés-Iglesias M
Idioma: Ingles.
Referencias bibliográficas: 37
Paginas: 32-39
Archivo PDF: 985.70 Kb.
RESUMEN
Sin resumen.
REFERENCIAS (EN ESTE ARTÍCULO)
Abreu Pérez MR, Gomez Tejeda JJ, Diéguez Guach RA. Características clínico-epidemiológicas de la COVID-19. Rev Habanera Cienc Médicas. 2020;19(2):3254. Spanish.
Saez M, Tobias A, Varga D, Barceló MA. Effectiveness of the measures to fl atten the epidemic curve of COVID-19. The case of Spain. Sci Total Environ. 2020;727:138761. doi:10.1016/j.scito tenv.2020.138761.
Ministry of Public Health (CU). Protocolo de Actuación Nacional para la COVID-19 Versión 1.4 [Internet]. Havana: Ministry of Public Health (CU); 2020 May [cited 2020 Jun 13]. 131 p. Available at: http://fi les.sld.cu/editorhome/fi les/2020/05/MIN SAP_Protocolo-de-Actuaci%C3%B3n-Nacional -para-la-COVID-19_versi%C3%B3n-1.4_mayo -2020.pdf. Spanish.
Li C, Chen LJ, Chen X, Zhang M, Pang CP, Chen H. Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020. Eurosurveillance. 2020 Mar 12;25(10):1–5.
Yang Z, Zeng Z, Wang K, Wong S-S, Liang W, Zanin M, et al. Modifi ed SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis. 2020;12(3):165–74.
Bizet NC, de Oca ACM. Modelos SIR modifi cados para la evolución del COVID19. ArXiv Prepr ArXiv200411352 [Internet]. 2020 Apr 23 [cited 2020 Jun 13]. Available at: https://arxiv.org/ pdf/2004.11352
Pérez Rodríguez R, Curra Sosa DA, Almaguer Mederos LE. Análisis preliminar de modelos SIRD para la predicción de la COVID-19: caso de la provincia de Holguín. An Acad Cienc Cuba. 2020;10(2). Spanish.
Vidal Ledo MJ, Guinovart Díaz R, Baldoquín Rodríguez W, Valdivia Onega NC, Morales Lezca W. Modelos matemáticos para el control epidemiológico. Educ Médica Super. 2020 May 30;34(2). Spanish.
Deb S, Majumdar M. A time series method to analyze incidence pattern and estimate reproduction number of COVID-19. ArXiv.org [Internet]. 2020 Mar 24 [cited 2020 Jun 13]. Available at: https://arxiv.org/pdf/2003.10655
Wang CJ, Ng CY, Brook RH. Response to COVID- 19 in Taiwan: big data analytics, new technology, and proactive testing. JAMA. 2020 Mar 3;323(14):1341–2.
Hu Z, Ge Q, Jin L, Xiong M. Artifi cial intelligence forecasting of COVID-19 in China. ArXiv.org [Internet]. 2020 Mar 1 [cited 2020 Apr 22]. Available at: https://arxiv.org/pdf/2002.07112
Zhou C, Su F, Pei T, Zhang A, Du Y, Luo B, et al. COVID-19: Challenges to GIS with Big Data. Geogr Sustain. 2020 Mar 1;1(1):77–87.
Simón Mínguez F. Procesos de difusión Logístico y Gompertz. Métodos numéricos clásicos en la estimación paramétrica [thesis]. [Granada]: Granada University (ES); 2016. Spanish.
Batista M. Estimation of the fi nal size of the COVID-19 epidemic. MedRxiv BioRxiv [Internet]. 2020 Feb 28 [cited 2020 Jun 13]; [11 p.]. Available at: https://www.medrxiv.org/content/10.1101/202 0.02.16.20023606v5.full.pdf. Spanish.
Morais AF. Logistic approximations used to describe new outbreaks in the 2020 COVID-19 pandemic. ArXiv:200311149 [Internet]. 2020 Mar 24 [cited 2020 Jun 13]; [9 p.]. Available at: https:// arxiv.org/pdf/2003.11149
Tátrai D, Várallyay Z. COVID-19 epidemic outcome predictions based on logistic fi tting and estimation of its reliability. ArXiv:2003.14160[qbio. PE] [Internet]. 2020 Mar 31 [cited 2020 Jun 13]; [15 p.]. Available at: http://arxiv.org/ abs/2003.14160
Wu K, Darcet D, Wang Q, Sornette D. Generalized logistic growth modeling of the COVID-19 outbreak in 29 provinces in China and in the rest of the world. ArXiv200305681 Phys Q-Bio Stat [Internet]. 2020 May 9 [cited 2020 Jun 13]; [34 p.]. Available at: http://arxiv.org/abs/2003.05681
Qeadan F, Honda T, Gren LH, Dailey-Provost J, Benson LS, VanDerslice JA, et al. Naive forecast for COVID-19 in Utah based on the South Korea and Italy models-the fl uctuation between two extremes. Int J Environ Res Public Health. 2020 Apr 16;17(8):2750.
Mazurek J, Neničková Z. Predicting the number of total COVID-19 cases in the USA by a Gompertz curve [Internet]. 2020 Apr 18 [cited 2020 Jun 13]. Available at: http://rgdoi.net/10.13140/ RG.2.2.19841.81761
Mazurek J, Perez Rico C, Fernandez Garcia C. Forecasting the number of COVID-19 cases and deaths in the World, UK, Russia and Turkey by the Gompertz curve [Internet]. 2020 May 4 [cited 2020 Jun 13]. Available at: https:// www.researchgate.net/profile/Jiri_Mazurek2/ publication/341132093_Forecasting_the_num ber_of_COVID-19_cases_and_deaths_in_the_ World_UK_Russia_and_Turkey_by_the_Gom pertz_curve/links/5eb042d6299bf18b9594bc43/ Forecasting-the-number-of-COVID-19-cases -and-deaths-in-the-World-UK-Russia-and-Tur key-by-the-Gompertz-curve.pdf
Razzak WA. Modelling New Zealand COVID-19 infection rate, and the effi cacy of social distancing policy. Discussion paper 20.04 [Internet]. Wellington (NZ): Massey University Business School; 2020 Mar [cited 2020 Jun 13]. 8 p. Available at: http://econfi n.massey.ac.nz/school/publi cations/discuss/2020/DP2004.pdf
Jia L, Li K, Jiang Y, Guo X. Prediction and analysis of Coronavirus Disease 2019. ArXiv200305447 Q-BioPE [Internet]. 2020 Mar 16 [cited 2020 Apr 22]; [19 p.]. Available at: https:// arxiv.org/abs/2003.05447
Villalobos-Arias M. Estimation of population infected by COVID-19 using regression Generalized logistics and optimization heuristics. ArXiv200401207 Q-Bio [Internet]. 2020 Apr 2 [cited 2020 Apr 22]; [16 p.]. Available at: http://arxiv.org/ abs/2004.01207
Milhinhos A, Costa PM. On the progression of COVID19 in Portugal: a comparative analysis of active cases using non-linear regression. medRxiv [Internet]. 2020 May 6 [cited 2020 Jun 13]. 8 p. Available at: http://medrxiv.org/lookup/ doi/10.1101/2020.05.02.20088856
Dattoli G, Di Palma E, Licciardi S, Sabia E. A note on the evolution of COVID-19 in Italy. ArXiv200308684 Q-Bio [Internet]. 2020 Mar 19 [cited 2020 Jun 13]. Available at: http://arxiv.org/ abs/2003.08684
Bauckhage C. The Math of Epidemic Outbreaks and Spread (Part 3) Least Squares Fitting of Gompertz Growth Models [Internet]. 2020 [cited 2020 Jun 13]. Available at: https://www .researchgate.net/profile/Christian_Bauckhage/ publication/340594164_The_Math_of_Epi demic_Outbreaks_and_Spread_Part_3_Least_ Squares_Fitting_of_Gompertz_Growth_Models/ links/5e934c074585150839d95188/The-Math-of -Epidemic-Outbreaks-and-Spread-Part-3-Least -Squares-Fitting-of-Gompertz-Growth-Models.pdf
Rodrigues Silva R, Velasco WD, Marques W da S, Tibirica CAG. A Bayesian analysis of the total number of cases of the COVID 19 when only a few data is available. A case study in the state of Goias, Brazil. medRxiv [Internet]. 2020 Apr 22 [cited 2020 Jun 13]; [14 p.]. Available at: http://medrxiv. org/lookup/doi/10.1101/2020.04.19.20071852
Dutra CM. Non-Linear fi tting of Sigmoidal Growth Curves to predict a maximum limit to the total number of COVID-19 cases in the United States. medRxiv [Internet]. 2020 Apr [cited 2020 Jun 13]; [7 p.]. Available at: http://medrxiv.org/lookup/ doi/10.1101/2020.04.22.20074898
Attanayake AMCH, Perera S, Jayasinghe S. Phenomenological modelling of COVID-19 epidemics in Sri Lanka, Italy and Hebei Province of China. Infectious Diseases (except HIV/ AIDS) [Internet]. 2020 May 8 [cited 2020 Jun 13]; [12 p.]. Available at: http://medrxiv.org/lookup/ doi/10.1101/2020.05.04.20091132
Ahmadi A, Fadaei Y, Shirani M, Rahmani F. Modeling and Forecasting Trend of COVID-19 Epidemic in Iran until May 13, 2020. medRxiv [Internet]. 2020 Mar [cited 2020 Jun 13]. Available at: http://medrxiv.org/lookup/ doi/10.1101/2020.03.17.20037671
Winsor CP. The Gompertz curve as a growth curve. Proc Natl Acad Sci U S A. 1932 Jan;18(1):1–8.
Humanitarian Data Exchange [Internet]. Novel Coronavirus (COVID-19) Cases Data [Internet]. New York: United Nations Offi ce for the Coordination of Humanitarian Affairs (OCHA); c2020 [cited 2020 Apr 22]. Available at: https://data.humdata .org/dataset/novel-coronavirus-2019-ncov-cases
Maxima, a Computer Algebra System [Internet]. Massachusetts: Massachusetts Institute of Technology (MIT);c2020 [cited 2020 Apr 22]. Available at: http://maxima.sourceforge.net/
R: The R Project for Statistical Computing [Internet]. [place unspecifi ed]: R: The R Project for Statistical Computing; 2020 [cited 2020 Apr 22]. Available at: https://www.r-project.org/
EFE. Italia llegó al pico de contagios, según Instituto de Sanidad. El Tiempo [Internet]. 2020 Mar 30 [cited 2020 Apr 22];Internacional:[about 3 p.]. Available at: https://www.eltiempo.com/mundo/ europa/italia-llego-al-pico-de-contagios-479168. Spanish.
McMurtry A. España «llega al pico» al registrar más de 18.000 muertes por COVID-19 Agencia Anadolu [Internet]. Ankara: Agencia Anadolu; 2020 Apr 15 [cited 2020 Apr 22]. Available at: https://www.aa.com.tr/es/mundo/españa-llega -al-pico-al-registrar-más-de-18000-muertes-por -COVID-19/1805168. Spanish.
Neill JW. Testing for lack of fi t in nonlinear regression. Ann Stat. 1988 Jun;16(2):733–40.