2020, Number 3
<< Back Next >>
MEDICC Review 2020; 22 (3)
Epidermal Growth Factor in Healing Diabetic Foot Ulcers: From Gene Expression to Tissue Healing and Systemic Biomarker Circulation
Berlanga-Acosta J, Camacho-Rodríguez H, Mendoza-Marí Y, Falcón-Cama V, García-Ojalvo A, Herrera-Martínez L, Guillén-Nieto G
Language: English
References: 83
Page: 24-31
PDF size: 228.05 Kb.
ABSTRACT
Lower-extremity diabetic ulcers are responsible for 80%
of annual worldwide nontraumatic amputations. Epidermal
growth factor (EGF) reduction is one of the molecular pillars
of diabetic ulcer chronicity, thus EGF administration may be
considered a type of replacement therapy. Topical EGF administration
to improve and speed wound healing began in
1989 on burn patients as part of an acute-healing therapy.
Further clinical studies based on topically administering EGF
to diff erent chronic wounds resulted in disappointing outcomes.
An analysis of the literature on unsuccessful clinical
trials identifi ed a lack of knowledge concerning: (I) molecular
and cellular foundations of wound chronicity and (II) the pharmacodynamic
requisites governing EGF interaction with its
receptor to promote cell response. Yet, EGF intra- and perilesional
infi ltration were shown to circumvent the pharmacodynamic
limitations of topical application. Since the first studies,
the following decades of basic and clinical research on EGF
therapy for problem wounds have shed light on potential uses
of growth factors in regenerative medicine. EGF’s molecular
and biochemical eff ects at both local and systemic levels are
diverse: downregulation of genes encoding infl ammation
mediators and increased expression of genes involved in cell
proliferation, angiogenesis and matrix secretion; EGF intervention
positively impacts both mesenchymal and epithelial
cells, reducing infl ammation and stimulating the recruitment of
precursor circulating cells that promote the formation of new
blood vessels; at the subcellular level, upregulation of the
EGF receptor with subsequent intracellular traffi cking, including
mitochondrial allocation along with restored morphology
of multiple organelles; and (4) local EGF infi ltration resulting
in a systemic, organismal repercussion, thus contributing to
attenuation of circulating inflammatory and catabolic reactants,
restored reduction-oxidation balance, and decreased
toxic glycation products and soluble apoptogenic eff ectors. It
is likely that EGF treatment may rearrange critical epigenetic
drivers of diabetic metabolic memory.
REFERENCES
Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017 Jul 15;376(24):2367–75.
Biswas S, Roy S, Banerjee J, Hussain SRA, Khanna S, Meenakshisundaram G, et al. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6976–81.
Caporali A, Meloni M, Nailor A, Mitic T, Shantikumar S, Riu F, et al. p75(NTR)-dependent activation of NF-kappaB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat Commun. 2015 Aug 13;6.
Berlanga-Acosta J, Mendoza-Marí Y, García-Ojalvo A, Acosta-Buxado JA, Fernández-Mayola M, Guillén- Nieto G. Epidermal Growth Factor (EGF) intralesional infi ltrations: from the bench to the diabetic ulcers cells. Integr Mol Med. 2019 Feb 20;6(1):1–7.
Park JW, Hwang SR, Yoon IS. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules. 2017 Aug;22(8):1259.
Yamakawa S, Hayashida K. Advances in surgical applications of growth factors for wound healing. Burns Trauma. 2019 Apr 5;7:10.
Blakytny R, Jude EB, Gibson JM, Boulton AJM, Ferguson MWJ. Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J Pathol. 2000 Mar 22;190(5):589–94.
Jude EB, Blakytny R, Bulmer J, Boulton AJM, Ferguson M. Transforming growth factor-beta 1, 2, 3 and receptor type I and II in diabetic foot ulcers. Diabet Med. 2002 Jun;19(6):440–7.
Portero-Otín M, Pamplona R, Bellmunt MJ, Ruiz MC, Prat J, Salvayre R, et al. Advanced glycation end product precursors impair epidermal growth factor receptor signaling. Diabetes. 2002 May;51(5):1535–42.
Berlanga-Acosta J, Schultz GS, López-Mola E, Guillén-Nieto G, García-Siverio M, Herrera- Martínez L. Glucose toxic eff ects on granulation tissue productive cells: the diabetics’ impaired healing. Biomed Res Int. 2013;2013:256043.
Cohen S. Origins of growth factors: NGF and EGF. J Biol Chem. 2008 Dec 5;283(49):33793–7.
Kasayama S, Ohba Y, Oka T. Epidermal growth factor defi ciency associated with diabetes mellitus. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7644–8.
Dodds MWJ, Johnson DA, Yeh CK. Health benefi ts of saliva: a review. J Dent. 2005 Mar. 33(3):223–33.
Oxford GE, Tayari L, Barfoot MD, Peck AB, Tanaka Y, Humphreys-Beher MG. Salivary EGF levels reduced in diabetic patients. J Diabetes Complications. 2000 May–Jun;14(3):140–5.
Schultz G, Rotatori DS, Clark W. EGF and TGFalpha in wound healing and repair. J Cell Biochem. 1991 Mar;45(4):346–52.
Falanga V, Eaglstein WH, Bucalo B, Katz MH, Harris B, Carson P. Topical use of human recombinant epidermal growth factor (h-EGF) in venous ulcers. J Dermatol Surg Oncol. 1992 Jul;18(7):604–6.
Cohen IK, Crossland MC, Garret A, Diegelmann RF. Topical application of epidermal growth factor onto partial-thickness wounds in human volunteers does not enhance reepithelialization. Plast Reconstr Surg. 1995 Aug;96(2):251–4.
Berlanga-Acosta J, Fernández-Montequín J, Valdés-Pérez C, Savigne-Gutiérrez W, Mendoza- Marí Y, García-Ojalvo A, et al. Diabetic foot ulcers and epidermal growth factor: revisiting the local delivery route for a successful outcome. Biomed Res Int. 2017 Aug 21;2017:2923759.
Thomson S, McLennan SV, Twigg SM. Growth factors in diabetic complications. Expert Rev Clin Immunol. 2006 Apr;2(3):403–18.
Berlanga J, Fernández JI, López E, López PA, del Río A, Valenzuela C, et al. Heberprot-P: a novel product for treating advanced diabetic foot ulcer. MEDICC Rev. 2013 Jan;15(1):11–5.
Berlanga-Acosta J, Gavilondo J, López-Saura PA, González-López T, Castro-Santana MD, López-Mola E, et al. Epidermal growth factor in clinical practice - a review of its biological actions, clinical indications and safety implications. Int Wound J. 2009 Sep;6(5):331–46.
Cross SE, Roberts MS. Defi ning a model to predict the distribution of topically applied growth factors and other solutes in excisional full-thickness wounds. J Invest Dermatol. 1999 Jan;112(1):36–41.
Cinza AM, Quintana M, Lambardero R, Pontón R, Pérez E, Pérez LC, et al. Establecimiento de un cultivo discontinuo para la producción del factor de crecimiento epidérmico humano en levaduras. Biotecnol Apl. 1991 May–Aug;8(2):166–73. Spanish.
Acosta JB, Savigne W, Valdez C, Franco N, Alba JS, del Río A, et al. Epidermal growth factor intralesional infi ltrations can prevent amputation in patients with advanced diabetic foot wounds. Int Wound J. 2006 Sep 19;3(3):232–9.
López-Saura PA, Yeras-Alos IB, Valenzuela- Silva C, González-Díaz O, del Río-Martín A, Berlanga- Acosta J, et al. Medical practice confi rms clinical trial results of the use of intralesional human recombinant epidermal growth factor in advanced diabetic foot ulcers. Adv Pharmacoepidemiol Drug Saf. 2013 Mar 20;2(2).
Yera-Alos IB, Alonso-Carbonell L, Valenzuela- Silva CM, Tiero-Iglesias AD, Moreira M, López- Mola E, et al. Active post-marketing surveillance of the intralesional administration of human recombinant epidermal growth factor in diabetic foot ulcers. BMC Pharmacol Toxicol. 2013 Sep;14:44.
Bui TQ, Bui QBP, Németh D, Heygi P, Szakács Z, Rumbus Z, et al. Epidermal growth factor is eff ective in the treatment of diabetic foot ulcers: meta-analysis and systematic review. Int J Environ Res Public Health. 2019 Jul;16(14):2584.
Aktas S, Baktiroglu S, Demir L, Kilicoglu OI, Topalan M, Guven E, et al. Intralesional application of epidermal growth factor in limb-threatening ischemic diabetic foot ulcers. Acta Orthop Traumatol Turc. 2015 Dec;50(3):277–84.
Endres NF, Barros T, Cantor A, Kuriyan J. Emerging concepts in the regulation of the EGF receptor and other receptor tyrosine kinases. Trends Biochem Sci. 2014 Oct 1;39(10):437– 46.
Ertugrul BM, Buke C, Erzoy OS, Ay B, Senen Demires D, Savk O. Intralesional epidermal growth factor for diabetic foot wounds: the fi rst cases in Turkey. Diabet Foot Ankle. 2015 Aug 11;6(1):28419.
Teran Soto JM, Gomez-Villa R, Aguilar Rebolledo F, Lozano Platonoff A, Fabian-Victoriano MR, Kresch-Tronick NS, et al. Effi cacy of intralesional recombinant human epidermal growth factor in diabetic foot ulcers in Mexican patients: a randomized double-blinded controlled trial. Wound Repair Regen. 2014 Jul;22(4):497–503.
Kahraman M, Abdulhamit M, Kizkapan TB, Ozcamdalli M, Uzun E, Mutlu Met al. The long-term outcomes following the application of intralesional epidermal growth factor in patients with diabetic foot ulcers. J Foot Ankle Surg. 2019 Mar;58(2):282–7.
Bhaskar B, Mekala NK, Baadhe RR, Rao S. Role of signaling pathways in mesenchymal stem cell diff erentiation. Curr Stem Cell Res Ther. 2013 Dec 31;9(6):508–12.
Miettinen PJ, Berger JE, Meneses J, Phung Y, Pedersen RA, Werb Z, et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature. 1995 Jul 27;376(6538):337–41.
Moghal N, Sternberg PW. Multiple positive and negative regulators of signaling by the EGF-receptor. Curr Opin Cell Biol. 1999 Apr 1;11(2):190–6.
Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006 Jan 17;366(1):2–16.
Tomas A, Futter CE, Eden ER. EGF receptor traffi cking: consequences for signaling and cancer. Trends Cell Biol. 2014 Jan;24(1):26–34.
Nanney LB. Epidermal and dermal eff ects of epidermal growth factor during wound repair. J Invest Dermatol. 1990 May;94(5):624–9.
Camacho-Rodríguez H, Guillén-Pérez IA, Roca-Campaña J, Baldomero-Hernández JE, Tuero-Iglesias ÁD, Galván-Cabrera JA, et al. Heberprot-P’s eff ect on gene expression in healing diabetic foot ulcers. MEDICC Rev. 2018 Jul;20(3):10–4.
Blumenberg M. Profi ling and metaanalysis of epidermal keratinocytes responses to epidermal growth factor. BMC Genomics. 2013 Feb 8;14:85.
Mendoza-Marí Y, Valdés-Pérez C, Rodríguez- Corrales E, Suárez-Alba J, García-Ojalvo A, et al. Histological and transcriptional expression diff erences between diabetic foot and pressure ulcers. J Diabetes Metab. 2013;4(8):296.
Acosta JB, del Barco DG, Vera DC Savigne W, López-Saura P, Guillén Nieto G, et al. The pro-infl ammatory environment in recalcitrant diabetic foot wounds. Int Wound J. 2008 Oct;5(4):530–9.
van Cruijsen H, Giaccone G, Hoekman K. Epidermal growth factor receptor and angiogenesis: opportunities for combined anticancer strategies. Int J Cancer. 2005 Dec. 117(6):883–8.
Berlanga J, Prats P, Remirez D, González R, López-Saura P, Aguiar J, et al. Prophylactic use of epidermal growth factor reduces ischemia/reperfusion intestinal damage. Am J Pathol. 2002 Aug;161(2):373–9.
Liu Q, Djuricin G, Nathan C, Gattuso P, Weinstein RA, Prinz RA. The eff ect of epidermal growth factor on the septic complications of acute pancreatitis. J Surg Res. 1997 Apr;69(1):171–7.
Maeda H, Rajesh KD, Maeda H, Suzuki R, Sasaguri S. Epidermal growth factor and insulin inhibit cell death in pancreatic beta cells by activation of PI3-kinase/AKT signaling pathway under oxidative stress. Transplant Proc. 2004 May;36(4):1163–5.
Yang S, Jin H, Zhao ZG. Epidermal growth factor treatment has protective eff ects on the integrity of the blood-brain barrier against cerebral ischemia injury in bEnd3 cells. Exp Ther Med. 2019 Mar;17(3):2397–402.
Singh B, Carpenter G, Coff ey RJ. EGF receptor ligands: recent advances. F1000 Faculty Rev 2270. 2016 Sep 8;5.
Xie Y, Shi X, Sheng K, Hang G, Li W, Zhao Q, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep. 2019 Feb;19(2):783–91.
Zhang J, Hu W, Diao Q, Wang Z, Miao J, Chen X, et al. Therapeutic eff ect of the epidermal growth factor on diabetic foot ulcer and the underlying mechanisms. Exp Ther Med. 2019 Mar;17(3):1643–8.
Wickert LE, Pomerenke S, Mitchell I, Masters KS, Kreeger PK. Hierarchy of cellular decisions in collective behavior: implications for wound healing. Sci Rep. 2016 Feb 2;6:20139.
Falcón-Cama V, Fernández-Mayola M, Mendoza- Marí Y, Acosta-Rivero N, García-Ojalvo A, Bringas-Pérez R, et al. Epidermal growth factor based therapy promotes intracellular traffi cking and accumulation of its receptor in the nucleus of fi broblasts from diabetic foot ulcers. J Diabetic Complications Med. 2016 Jan;1:111.
Clark AJ, Ishii S, Richert N, Merlino GT, Pastan I. Epidermal growth factor regulates the expression of its own receptor. Proc Natl Acad Sci USA. 1985 Dec;82(24):8374–8.
Olsen JV, Blagoev B, Gnad F, Kumar C, Mortensen P, Mann M, et al. Global, in vivo, and site-specifi c phosphorylation dynamics in signaling networks. Cell. 2006 Nov 3;127(3):635–48.
Waters KM, Liu T, Quesenberry RD, Wilse AR, Bandyopadhyay S, Kathman LE, et al. Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data. PLoS One. 2012 Mar 29;7(3):e34515.
Lee HH, Wang YN, Hung MC. Non-canonical signaling mode of the epidermal growth factor receptor family. Am J Cancer Res. 2015 Sep 15;5(10):2944–58.
Wang YN, Yamauchi H, Hsu JM, Hung MC. Nuclear traffi cking of the epidermal growth factor receptor family membrane proteins. Oncogene. 2010 Jul 15;29(28):3997–4006.
Lin SY, Makino K, Xia W, Matin A, Wen Y, Kawong KY, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. 2001 Aug 9;3(9):802–8.
Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017 May;9(5):52.
Dittmann K, Mayer C, Rodemann HP. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother Oncol. 2005 Jul 31;76(2):157–61.
Bouayad D, Pederzoli-Ribeil M, Mocek J, Candalh C, Arlet JB, Hermine O, et al. Nuclearto- cytoplasmic relocalization of the proliferating cell nuclear antigen (PCNA) during diff erentiation involves a chromosome region maintenance 1 (CRM1)-dependent export and is a prerequisite for PCNA antiapoptotic activity in mature neutrophils. J Biol Chem. 2012 Sep 28;287(40):33812–25.
Tan X, Lambert PF, Ragraeger AC, Anderson RA. Stress-induced EGFR traffi cking: mechanisms, functions, and therapeutic implications. Trends Cell Biol. 2016 May;26(5):352–66.
Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I, et al. Epidermal growth factor receptor translocation to the mitochondria: regulation and eff ect. J Biol Chem. 2009 Dec 25;284(52):36592–604.
Che TF, Lin CW, Wu YY, Cheng YJ, Han CL, Chang YI, et al. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC. Oncotarget. 2015 Nov 10;6(35):37349–66.
Bollu LR, Ren J, Blessing AM, Katreddy RR, Gao G, Xu L, et al. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle. 2014 Aug 1;13(15):2415–30.
Roepstorff K, Grandal MV, Henriksen L, Kanudsen SLJ, Lerdrup M, et al. Diff erential eff ects of EGFR ligands on endocytic sorting of the receptor. Traffi c. 2009 Aug;10(8):1115–27.
Singh AB, Harris RC. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal. 2005 Oct;17(10):1183–93.
Berlanga-Acosta J, Mendoza-Marí Y, García- Ojalvo A, Fernández-Mayola M, Guillén-Nieto G. Epidermal growth factor therapy impact on scar tissue resilience of diabetic lower limbs ulcers – An enlightening hypothesis. J Diabetes Metab. 2018 Jul 31;9(7):798.
Alexander PB, Yuang L, Yang P, Sun T, Chen R, Xiang H, et al. EGF promotes mammalian cell growth by suppressing cellular senescence. Cell Res. 2014 Nov 3;25(1):135–8.
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005 Jun;54(6):1615–25.
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010 Oct 29;107(9):1058–70.
Ojalvo AG, Marí YM, Mayola MF, Pérez CV, Gutiérrez WS, et al. Healing enhancement of diabetic wounds by locally infi ltrated epidermal growth factor is associated with systemic oxidative stress reduction. Int Wound J. 2016 Mar 21;14(1):214–25.
Arda-Pirincci P, Bolkent S. The role of epidermal growth factor in prevention of oxidative injury and apoptosis induced by intestinal ischemia/ reperfusion in rats. Acta Histochem. 2014 Jan;116(1):167–75.
Holbrook NJ, Ikeyama S. Age-related decline in cellular response to oxidative stress: links to growth factor signaling pathways with common defects. Biochem Pharmacol. 2002 Aug 31;64(5–6):999–1005.
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002 Jun 30;192(1):1–15.
Tang X, Liu B, Wang X, Yu Q, Fang R. Epidermal growth factor, through alleviating oxidative stress, protect IPEC-J2 cells from lipopolysaccharides- induced apoptosis. Int J Mol Sci. 2018 Mar;19(3):848.
Ma J, Jin G. Epidermal growth factor protects against myocardial ischaemia reperfusion injury through activating Nrf2 signalling pathway. Free Radic Res. 2019 Mar 6;53(3):313–23.
Ozturk AM, Sozbilen MC, Sevgili E, Dagci T, Özyalcin H, et al. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury. Injury. 2018 Jun;49(6):1038–45.
García-Ojalvo A, Berlanga-Acosta J, Figueroa- Martínez A, Bequet M. Systemic translation of locally infi ltrated epidermal growth factor in diabetic lower extremity wounds. Int Wound J. 2019 Aug;16(2):1294–303.
Hart J. Infl ammation. 2: its role in the healing of chronic wounds. J Wound Care. 2002 Aug;11(7):245–9.
Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indiff erent? Diabetes. 2006 Jan;54 Suppl 2(2):S114–24.
Liaqat A, Rehman K, Rasul A, Hamid Akash MS. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr. 2017 Jan;27(3):229–36.
Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes. 2015 Jul;64(7):2289–98.