2020, Number 4
<< Back Next >>
Biotecnol Apl 2020; 37 (4)
Influence of pH and NaCl concentration on growth and light emission by two strains of Vibrio harveyi
Iglesias RMV, García ML, Ortiz GE, Álvarez VCM, Lugioyo GGM, Núñez MRR
Language: Spanish
References: 23
Page: 4211-4217
PDF size: 702.90 Kb.
ABSTRACT
The luciferin-luciferase enzyme complex of luminescent bacteria is widely used as environmental quality biosensors, because it surpasses other bioassays for the analysis of chemical contaminants in speed, accuracy, sensitivity and simplicity. In this work, it was evaluated the influence of pH and initial NaCl concentration with the aim of optimizing microbial growth and luminescence of two Vibrio harveyi strains (CBM-976 and CBM-992) isolated from the marine Cuban shelf. The cultures showed wide tolerance to initial pH values between 6 and 10, with zones where the specific growth speed (μ) and the luminescence for both cultures are maximized. The initial pH values calculated using the orthogonal polynomials model in order to reach the optimum μ were pH 7.76 and 8.01 for CBM-976 and CBM-992, respectively, and the optimum luminescence was found at pH 7.47 for CBM-976 and 7.57 for CBM-992. The isolates also showed a wide tolerance to the variation of NaCl concentration, with μ and luminescence maxima between 3 and 4 % NaCl. The mathematical analysis shows that the μ optimal value is reached at 3.63 and 3.69 % of NaCl for CBM-976 and CBM-992, respectively; while the optimal luminescence for CBM-976 is obtained at 3.44 % of NaCl and at 3.33 % for CBM-992. These results contribute to establish the basic parameters to develop a bioassay for monitoring the environmental quality in marine ecosystems.
REFERENCES
Martín A, Serrano S, Santos A, Marquina D, Vázquez C. Bioluminiscencia bacteriana. Reduca (Biología) Serie Microbiol. 2010;3(5):75-86.
Dikici E, Qu X, Rowe L, Millner L, Logue C, Deo SK, et al. Aequorin variants with improved bioluminescence properties. Protein Eng Design Select. 2009;22(4):243-8.
Michelini E, Cevenini L, Mezzanotte L, Roda B, Dolci L, Roda A. Bioluminescent reporter proteins for multicolor assays. Minerva Biotecnol. 2009;21(2):87.
Deryabin D, Aleshina E. Natural and recombinant luminescent microorganisms in biotoxicity testing of mineral waters. Appl Biochem Microbiol. 2008;44(4):378-81.
Onorati F, Mecozzi M. Effects of two diluents in the Microtox® toxicity bioassay with marine sediments. Chemosphere. 2004;54(5):679-87.
Stuart M, Lugioyo GM, Martínez M, Pérez R, Álvarez C. Asociación entre la presencia de metales pesados en sedimentos marinos y la atenuación de la luminiscencia de la bacteria Photobacterium leiognathi. Contrib Educ Protec Ambiental. 2001;2:1-10.
Delgado Gómez Y, Umaña Castro R, Solano González S, Iglesias Rodríguez MV, Ortiz Guilarte E, Álvarez Valcárcel C, et al. Phenotypic characterization and molecular identification of a luminescent marine bacterum isolated from the nw shelf of Cuba. Biotecnia. 2017;19(3):3-10.
Fang H, Dong Y, Xu Z, Yuan Y, Li X, Yi B. Cultural and luminescent conditions of a marine luminous bacterium. Mar Sci Bull. 2008;10(1):46-53.
Soto W, Gutierrez J, Remmenga M, Nishiguchi MK. Salinity and temperature effects on physiological responses of Vibrio fischeri from diverse ecological niches. Microb Ecol. 2009;57(1):140-50.
Srivastava VS, MacLeod RA. Nutritional requirements of some marine luminous bacteria. Canadian J Microbiol. 1971;17(5):703-11.
Blum LJ. Bio-and chemi-luminescent sensors. 1st ed. Singapore: World Scientific; 1997.
Scheerer S, Gomez F, Lloyd D. Bioluminescence of Vibrio fischeri in continuous culture: Optimal conditions for stability and intensity of photoemission. J Microbiol Methods. 2006;67(2):321-9.
Baumann P, Baumann L. The marine gram negative eubacteria: genera Photobacterium, Benekea, Alteromonas, Pseudomonas and Alcaligenes. In: Starr MP, Stolp H, Trüper HG, Balows A and Schlegel H, editors. The Prokaryotes. Berlin, Heidelberg: Springer-Verlag; 1981. p. 1302-31.
Iglesias MV, Umaña-Castro R, García L, Ortiz E, Núñez R, Álvarez C, et al. Caracterización fenotípica y molecular, e influencia de medios de cultivo, en el crecimiento y emisión de luz de bacterias del litoral de La Habana, Cuba. Rev Biol Trop. 2020;68(4):1298-310.
Ramahian N, Chandramohan D. Bacterial bioluminescens in marine pollution assessment. Ocean Technol: Perspectives. 1994:967-80.
Doran PM. Bioprocess Engineering Principles. 2nd ed. United Kingdom: Academic Press; 2013.
Lerch G. La experimentación en las ciencias biológicas y agrícolas. 1st ed. La Habana: Científico -Técnica; 1977.
Kumar AR, Jayaprakashvel M, FeuKLagerstedt E, Hussain AJ. Factors affecting bioluminescence in free living Photobacterium spp. isolated from Bay of Bengal, India. J Mar Biosci. 2015;1(1):33-49.
Lluis-Riera M. Estudios hidrológicos del Golfo de Batabanó y de las aguas oceánicas adyacentes. Serie Oceanol. 1972;14:1-49.
Walters P, Lloyd D. Salt, pH and temperature dependencies of growth and bioluminescence of three species of luminous bacteria analyzed on gradient plates. J Gen Microbiol. 1985;131:2865-9.
Nunes-Halldorson VdS, Duran NL. Bioluminescent bacteria: Lux genes as environmental biosensors. Braz J Microbiol. 2003;34:6.
Tabei Y, Era M, Ogawa A, Morita H. Effects of magnesium sulfate on the luminescence of Vibrio fischeri under nutrient-starved conditions. Biosci Biotechnol Biochem. 2011;75(6):1073-8.
Tabei Y, Era M, Ogawa A, Morita H. Interactions between bicarbonate, potassium, and magnesium, and sulfur- dependent induction of luminescence in Vibrio fischeri. J Basic Microbiol. 2012;52(3):350-9.