2020, Number 4
Next >>
Biotecnol Apl 2020; 37 (4)
Evaluation of plantain and cassava peels wastes for amylases production by Bacillus amyloliquefaciens A16
Heredia MJP, Sánchez CEM
Language: Spanish
References: 29
Page: 3201-3205
PDF size: 309.39 Kb.
ABSTRACT
The substrates used to produce microbial amylases are one of the principal factors affecting the process yield because the enzyme activity and production costs depend on their characteristics. Most industrial amylases produced are obtained from synthetic substrates formulated from expensive commercial starches. It is important to search for new affordable substrates to obtain microbial amylases, with specific properties that allow their application in several industrial processes. The agro-industrial wastes with starch in their composition may be used as affordable substrates for amylase production. In this study, the enzymatic activities produced from Bacillus amyloliquefaciens (Isolated A16) in culture media made from plantain and cassava peels, with a starch concentration of 7.74 and 5.27 % w/w, were compared to the enzyme activity obtained in a standard media made from soluble starch. During fermentation, samples were taken every 12 h to obtain enzymatic extracts in which the starch degradation was qualitatively evaluated, and the amylase activity was determined at pH 6.5. After 84 h of fermentation, the plantain peels media presented a major amylase activity (96.52 ± 0.36 U/mL) at pH 7.0, results higher to those obtained in the starch standard media (74.01 U/mL) and cassava peels media (40.94 ± 0.19 U/mL). Hence, this showed that plantain peels are a usable and accessible substrate that may provide good yields in amylase production.
REFERENCES
Magallanes-Cruz P, Flores-Silva P, Bello-Perez L. Starch structure influences its digestibility: A Review. J Food Sci. 2017;82:2016-23.
Krisztina RV. Starch Bearing Crops as Food Source. In: Gyorgy F, editor. Cultivated plants, primarily as food sources. Oxford: Eolss Publishers Co. Ltd; 2011. p. 253-87.
Bertoft E. Understanding Starch Structure: Recent Progress. Agronomy.2017; 7: 1-29.
Moteiro de Souza P, Oliveira e Magalhães P. Application of microbial α-amylase in industry – a review. Braz J Microbiol. 2010;41:850-61.
Abd-Elhalem BT, El-Sawy M, Gamal RF, Abou-Taleb KA. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann Agr Sci. 2015;60:193-202.
Robyt J. Enzymes in the hydrolysis and synthesis of starch. In: Whistler R, Bemiller J, Paschall E, editors.Starch: Chemistry and Technology. London: Academic Press; 1984. p. 87-123.
Moreno M, Montoya O, Gutiérrez P. Purificación y caracterización de una α– amilasa producida por la cepa nativa Bacillus sp. BM1. Dyna. 2010;162:31-8.
Enhasy H. Bioprocess development for the production of alpha amylase by Bacillus amyloliquefaciens in batch and fed-batch cultures. Res J Mic. 2007;2:560-8.
Unakal C, Kallur R, Kaliwal B. Production of α-amylase using banana waste by Bacillus subtilis under solid state fermentation. Eur J Exp Biol. 2012;2:1044-52.
Olukanni D, Olatunji T. Cassava Waste management and biogas generation potential in selected local government areas in Ogun State, Nigeria. Recycling. 2018;3:1-12.
Wheatley C, Chuzel G, Zakhia N. CASSAVA: Uses as a Raw Material. In:Caballero B, editors. Encyclopedia of Food Sciences and Nutrition.London: Academic Press; 2003. p. 969-74.
Food and Agriculture Organization. FAO [Internet]. Análisis proximal de calcio y fósforo en harinas de pescado; 1994 [Cited 2020 mar 5]. Available from: http://www. fao.org/3/ab482s/AB482S02.htm
Gerena Baron F. Obtención de jarabes azucarados a partir de la hidrólisis química de residuos de cáscaras de naranja (Citrus sinensis l var. Valencia) y papa (Solanum tuberosum) variedad diacol capiro (r-12) para ser empleados como edulcorantes en la industria de alimentos [dissertation]. Duitama: Universidad Nacional Abierta y a Distancia – UNAD. 2013. [Cited 2020 Feb 26]. Available from: https://repository. unad.edu.co/handle/10596/1528
Pedroza A, Matiz A. Aislamiento y selección de microorganismos productores de amilasas y celulasas . In: Pedroza A, Matiz A, Quevedo B, Aguirre A, editors. Manual de introducción a la biotecnología. Bogotá: Pontificia Universidad Javeriana; 2007. p. 118.
Buitrago S, Sánchez E, Guerrero H. Aislamiento de microorganismos amilolíticos, celulolíticos y lignolíticos a partir del suelo de humedales de Bogotá. Revista SENNOVA. 2014;1:148-55.
Olanbiwoninu A, Fasiku S. Production of bacterial amylases and cellulases using sweet potato (Ipomoea batatas. (L.) Lam.) peels. Afr J Bioche Res. 2015;9:104-9.
Bryjak J. Glucoamylase, a-amylase and b-amylase immobilization on acrylic carriers. Biochem Eng J. 2003;16:347-55.
Agama-Acevedo E, Sañudo-Barajas J, Vélez De La Rocha R, González-Aguilar L, Bello-Peréz G. Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA - J Food. 2016;14:117-23.
Hernández-Carmona F, Morales- Matos Y, Lambis-Miranda H, Pasqualino J. Starch extraction potential from plantain peel wastes. J Environ Chem Eng. 2017;5:4980-5.
Anunputtikul W, Rodtong S. Laboratory scale experiments for biogas production from cassava tubers. Jsee journal. 2004;3:238-43.
Olufunke E, Ogugua A, Blaschek H, Ezeji T. Protein enrichment of cassava peel by submerged fermentation with Trichoderma viride (ATCC 36316). Afr J Biotech. 2010;9:187-94.
Bayitse R, Hou X, Bjerre A, Saalia F. Optimisation of enzymatic hydrolysis of cassava peel to produce fermentable sugars. AMB Express. 2015;5:1-7.
Souto L, Caliari M, Soares Junior M, Fiorda F, Garcia M. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis. Food Sci Technol. 2016;37:19-24.
Moreno P, Gourdji S. Research program on climate change, agriculture and food safety. Retrieved from Cassava starch content and its relationship with rainfall: Analysis of a starch content database in Colombia. InfoNote. Córdoba: Research Program on Climate Change, Agriculture and Food Security. 2015, Febrero. [Cited 2020 mar 1]. Available from https://www.researchgate.net/ publication/276958217_Cassava_starch_ content_and_its_relationship_with_rainfall_ Analysis_of_a_starch_content_database_ in_Colombia
El-Fallal A, Abou M, El-Sayed A, Omar N. Starch and microbial α-amylases: From concepts to biotechnological applications. In: Chang-Fa C, editors. Carbohydrates - Comprehensive studies on glycobiology and glycotechnology. IntechOpen; 2012. p. 459-88.
Smerilli M, Neureiter M, Wurz S, Haas C, Frühauf S,Fuchs W. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions. J Chem Technol BIOT. 2015;90:648-57.
Jadhav S, Kataria A, Bhise K, Chougule S. amylase production from potato and banana peel waste. Int J Mic Appl S. 2013;2:410-14.
Ayantade V, Ademola O. characterization of amylase from some Aspergillus and Bacillus species associated with Cassava waste peels. Adv Microb. 2017;7:280-92.
Adeniran H, AbioseS, Ogunsua A. Production of fungal β-amylase and amyloglucosidase on some Nigerian agricultural residues. Food Bioprocess Tech. 2010;3:693-98.