2020, Number 2
<< Back
Biotecnol Apl 2020; 37 (2)
Novel contributions by Transmission Electron Immunomicroscopy on the intracellular trafficking of EGFR, PCNA, FOXO1A-P and LC3B and their biological response in clinical samples of diabetic foot ulcers treated with Heberprot-P®
Falcón CV, González BM, Acosta RN, Pentón AE, Guillén NG, Mendoza MY, Bringas PR, Pereira YK, García OA, Fernández MM, Garateix SR, Acosta MEF, González LNE, Rosales UCM, Berlanga AJ
Language: English
References: 31
Page: 2511-2514
PDF size: 599.61 Kb.
ABSTRACT
Diabetic foot ulcers (UPDs) is a diabetes complication and the leading cause of non-traumatic amputations. It was shown that Heberprot-P®, a therapeutic product based on epidermal growth factor (EGF), enhances the healing response or healing of chronic wounds (RCH) in UPDs. However, a better understanding of the cellular and molecular mechanisms of EGF receptor (EGFR) activation with its natural ligand in vivo, its intracellular traffic and the biological response to treatment was required. A study with electron immunomicroscopy was carried out for the detection and quantification of EGFR, its related molecules and autophagy vacuoles in fibroblast-like cells (FLCs) from UPDs. Samples were analyzed before and after treatment with Heberprot-P®. Before treatment, little EGFR and proliferating cell nuclear antigen (PCNA) were detected, predominating the transcriptional factor of phosphorylated hairpin head O1 (FOXO1A-P) in the cell nucleus and the induction of autophagy in FLCs from UPDs, possibly associated with the impairment of the functions of the FLCs in the RCH. Heberprot-P® induced an early increase in the immunodetection of EGFR and PCNA in the cell nucleus (15-60 minutes) and later in mitochondria (6 and 24 h). The nuclear functions of FOXO1A-P and autophagy decreased. EGFR and PCNA were shown associated with exosome-like structures and their accumulation in the extracellular matrix. All these were relevant for the restoration of FLCs functions, facilitating skin RCH. This was the first in vivo report demonstrating a prolonged biological effect (24 h) of Heberprot-P® infiltration in FLCs from UPDs, related to RCH, and supporting the current therapeutic protocol.
REFERENCES
Pathak A, Marothi Y, Kekre V, Mahadik K, Macaden R, Lundborg CS. High prevalence of extended spectrum b-lactamase-producing pathogens results of a surveillance study in two hospitals in Ujjain, India. Infect Drug Resist. 2012;5:65-73.
Greenwood BM, Bojang K, Whitty CJ, Targett GAT. Malaria. Lancet. 2005;365:1487-98.
Scholz T, Heyl C, Bernardi D, Zimmermann S, Kattner L, Klein CD. Chemical, biochemical and microbiological properties of a brominated nitrovinylfuran with broad-spectrum antibacterial activity. Bioorg Med Chem. 2013;21:795-804.
Kaman W, Hays J, Endtz H, Bikker FJ. Bacterial proteases: targets for diagnostics and therapy. Eur J Clin Microbiol Infect Dis. 2014;33:1081-7.
Chandu D, Nandi D. PepN is the major aminopeptidase in Escherichia coli: insights on substrate specificity and role during sodium-salicylate-induced stress. Microbiology. 2003;149:3437-47.
Harbut MB, Velmourougane G, Dalal S, Reiss G, Whisstock JC, Onder O, et al. Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc Natl Acad Sci USA. 2011;108:13885-6.
Drinkwater N, Lee J, Yang W, Malcolm TR, McGowan S. M1 aminopeptidases as drug targets: broad applications or therapeutic niche? FEBS J. 2017;284:1473-88.
Chandu D, Kumar A, Nandi D. PepN, the major Suc-LLVY-AMC-hydrolyzing enzyme in Escherichia coli, displays functional similarity with downstream processing enzymes in Archaea and Eukarya. J Biol Chem. 2003;278:5548-56.
Flipo M, Beghyn T, Leroux V, Florent I, Deprez BP, Depres-Poulain RF. Novel selective inhibitors of the zinc plasmodial aminopeptidase PfA-M1 as potential antimalarial agents. J Med Chem. 2007;50:1322-34.
Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot (Tokyo). 1976;29:97-9.
Mucha A, Drag M, Dalton JP, Kafarski P. Metallo-aminopeptidase inhibitors. Biochimie. 2010;92:1509-29.
Scornik O, Botbol V. Bestatin as an experimental tool in mammals. Curr Drug Metab. 2001;2:67-85.
Velmourougane G, Harbut MB, Dalal S, McGowan S, Oellig CA, Meinhardt N, et al. Synthesis of new (-)-bestatin-based inhibitor libraries reveals a novel binding mode in the S1 pocket of the essential malaria M1 metalloaminopeptidase. J Med Chem. 2011;54:1655-66.
Cano PA, Islas-Jácome A, Rangel- Serrano Á, Anaya-Velázquez F, Padilla-Vaca F, Trujillo-Esquivel E, et al. In vitro studies of chromone-tetrazoles against pathogenic protozoa, bacteria, and fungi. Molecules. 2015;20:12436-49.
Thormann M, Almstetter M. Method of preparation of bioisosteres of actinonin of interest as metalloproteinase inhibitors. WO 2004099124 2004 May 08.
Méndez Y, Pérez-Labrada K, González- Bacerio J, Valdés G, Chávez MA, Osuna J, et al. Combinatorial multicomponent access to natural-products-inspired peptidomimetics: Discovery of selective inhibitors of microbial metallo-aminopeptidases. ChemMedChem. 2014;9:2351-9.
González-Bacerio J, Maluf SEC, Méndez Y, Pascual I, Florent I, Melo PMS, et al. KBE009: An antimalarial bestatin-like inhibitor of the Plasmodium falciparum M1 aminopeptidase discovered in an Ugi multicomponent reaction-derived peptidomimetic library. Bioorg Med Chem. 2017;25:4628-36.
Méndez Y, De Armas G, Pérez I, Rojas, T, Valdés-Tresanco ME, Izquierdo M, et al. Discovery of potent and selective inhibitors of the Escherichia coli M1-aminopeptidase via multicomponent solid-phase synthesis of tetrazole-peptidomimetics. Eur J Med Chem. 2019;163:481-99.
González-Bacerio J, Osuna J, Ponce A, Fando R, Figarella K, Méndez Y, et al. High-level expression in Escherichia coli, purification and kinetic characterization of Plasmodium falciparum M1-aminopeptidase. Protein Expr Purif. 2014;104:103-14.
Larrea C. Identificación de peptidomiméticos inhibidores de la aminopeptidasa neutra M1 de Escherichia coli. Tesis de Licenciatura en Microbiología, Facultad de Biología, Universidad de La Habana, 2015.
Varela AC, De Armas G, Méndez Y, Izquierdo M, Alonso del Rivero M, Rivera DG, et al. Structure-activity relationship of the inhibition of M1-aminopeptidases from Escherichia coli (ePepN) and Plasmodium falciparum (PfA-M1) by bestatin-derived peptidomimetics. Rev Cub Cienc Biol. 2019;7:1-21.
González-Bacerio JO, Carmona AK, Gazarini ML, Chávez MA, Alonso del Rivero M. Kinetic characterization of recombinant PfAM1, a M1-aminopeptidase from Plasmodium falciparum (Aconoidasida: Plasmodiidae), using fluorogenic peptide substrates. Rev Cub Cienc Biol. 2015;4:40-8.
González-Bacerio J. KBE009: peptidomimético inhibidor potente y selectivo de la aminopeptidasa M1 de Plasmodium falciparum con actividad antimalárica in vitro. Tesis de Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad de La Habana, 2015.
Addlagatta A, Gay L, Matthews BW. Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site. Proc Natl Acad Sci USA. 2006;103:13339-44.
McGowan S, Porter CJ, Lowther J, Stack CM, Golding SJ, Skinner-Adams TS, et al. Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc Natl Acad Sci USA. 2009;106:2537-42.
Patch JA, Kirshenbaum K, Seurynck SL, Zuckermann RN, Barron AE. Versatile oligo(N-substituted) glycines: the many roles of peptoids in drug discovery. In: Nielsen PE. Pseudo-peptides in drug discovery. Weinheim: Wiley-VCH; 2004. p. 1-31.
Golich F, Han M, Crowder MW. Overexpression, purification, and characterization of aminopeptidase N from Escherichia coli. Protein Expr Purif. 2006;47:634-9.
Poreba M, McGowan S, Skinner-Adams TS, Trenholme KR, Gardiner DL, Whisstock JC, et al. Fingerprinting the substrate specificity of M1 and M17 aminopeptidases of human malaria, Plasmodium falciparum. PLoS One. 2012;7:e31938.
Allary M, Schrével J, Florent I. Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase. Parasitology. 2002;125:1-10.
Skinner-Adams TS, Peatey CL, Anderson K, Trenholme KR, Krige D, Brown CL, et al. The aminopeptidase inhibitor CHR-2863 is an orally bioavailable inhibitor of murine malaria. Antimicrob Agents Chemother. 2012;56:3244-9.
Skinner-Adams TS, Stack CM, Trenholme KR, Brown CL, Grembecka J, Lowther J, et al. Plasmodium falciparum neutral aminopeptidases: New targets for anti-malarials. Trends Biochem Sci. 2010;35:53-61.