2019, Number 4
Next >>
Biotecnol Apl 2019; 36 (4)
Relevance of the Gag antigen for developing vaccine candidates against HIV-1
Fresneda-Mora AB, Rodríguez-Alonso I, Iglesias E
Language: English
References: 60
Page: 4201-4209
PDF size: 347.26 Kb.
ABSTRACT
Gag is one of the most conserved HIV-1 proteins. Invariable regions of this antigen have proven to be critical for viral fitness and Gag-specific T-cell responses have been associated with reduced viral load. Because of that, the whole Gag antigen or their specific epitopes are usually included in vaccine candidates against the HIV-1. This review explores the use of Gag or some of its fragments as antigens in HIV-1 vaccines clinical trials, focusing on the characteristics of each formulation, the immunization protocols and the main results obtained with vaccine candidates. The different types of vaccine candidates tested are reviewed, according to the vaccine technology used: viral vectored-vaccines based on the vesicular stomatitis virus vectors and replication deficient adenovirus vectors, DNA vaccines alone or in prime boost regimes with recombinant modified vaccinia virus Ankara vectors, virus-like particle technology and synthetic peptides. The analysis shown demonstrates the rationale for the inclusion of Gag-based antigens in the candidates to be developed, either preventive or therapeutic, against HIV-1.
REFERENCES
Montagnier L. Historical essay. A history of HIV discovery. Science. 2002;298:1727-8.
Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984;224:500-3.
UNAIDS. Global AIDS Update 2016. Geneva: UNAIDS; 2016.
Gray GE, Laher F, Lazarus E, Ensoli B, Corey L. Approaches to preventative and therapeutic HIV vaccines. Curr Opin Virol. 2016;17:104-9.
Passaes CP, Sáez-Cirion A. HIV cure research: advances and prospects. Virology. 2014;454-455:340-52.
Mali SN, Sapkal PM. HIV drug resistance: An overview. Int J Res Method. 2015;1:72-82.
de Goede AL, Vulto AG, Osterhaus ADME, Gruters RA. Understanding HIV infection for the design of a therapeutic vaccine. Part II: Vaccination strategies for HIV. Ann Pharm Fr. 2015;73:169-79.
de Goede AL, Vulto AG, Osterhaus ADME, Gruters RA. Understanding HIV infection for the design of a therapeutic vaccine. Part I: Epidemiology and pathogenesis of HIV infection. Ann Pharm Fr. 2015;73:87-99.
Schüpbach J. Viral RNA and p24 antigen as markers of HIV disease and antiretroviral treatment success. Int Arch Allergy Immunol. 2003;132:196-209.
Tritel M, Resh MD. Kinetic analysis of human immunodeficiency virus type 1 assembly reveals the presence of sequential intermediates. J Virol. 2000;74:5845-55.
Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med. 2015;66:423-37.
Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/ founder viruses in acute and early HIV-1 infection. J Exp Med. 2009;206:1273-89.
Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004;200:749-59.
Février M, Dorgham K, Rebollo A. CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses. 2011;3:586-612.
Fiorentini S, Marini E, Caracciolo S, Caruso A. Functions of the HIV-1 matrix protein p17. New Microbiol. 2006;29:1-10.
Baum LL. Role of humoral immunity in host defense against HIV. Current HIV/ AIDS Rep. 2010;7:11-8.
Overbaugh J, Morris L. The antibody response against HIV-1. Cold Spring Harb Perspect Med. 2012;2:a007039.
Li G, Verheyen J, Rhee SY, Voet A, Vandamme AM, Theys K. Functional conservation of HIV-1 Gag: implications for rational drug design. Retrovirology. 2013;10:126.
Wright JK, Brumme ZL, Carlson JM, Heckerman D, Kadie CM, Brumme CJ, et al. Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: associations with HLA type and clinical parameters. J Virol. 2010;84:10820-31.
Narwa R, Roques P, Courpotin C, Parnet-Mathieu F, Boussin F, Roane A, et al. Characterization of human immunodeficiency virus type 1 p17 matrix protein motifs associated with mother-to-child transmission. J Virol. 1996;70:4474-83.
Grossman Z, Meier-Schellersheim M, Paul WE, Picker LJ. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nat Med. 2006;12:289-95.
McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol. 2010;10:11-23.
Ndongala ML, Peretz Y, Boulet S, Doroudchi M, Yassine-Diab B, Boulassel MR, et al. HIV Gag p24 specific responses secreting IFN-gamma and/or IL-2 in treatmentnaive individuals in acute infection early disease (AIED) are associated with low viral load. Clin Immunol. 2009;131:277-87.
Altfeld M, Rosenberg ES. The role of CD4(+) T helper cells in the cytotoxic T lymphocyte response to HIV-1. Curr Opin Immunol. 2000;12:375-80.
García Ribas S, Ondoa P, Schüpbach J, van der Groen G, Fransen K. Performance of a quantitative human immunodeficiency virus type 1 p24 antigen assay on various HIV-1 subtypes for the follow-up of human immunodeficiency type 1 seropositive individuals. J Virol Methods. 2003;113:29-34.
Tehe A, Maurice C, Hanson DL, Borget MY, Abiola N, Maran M, et al. Quantification of HIV-1 p24 by a highly improved ELISA: an alternative to HIV-1 RNA based treatment monitoring in patients from Abidjan, Cote d’Ivoire. J Clin Virol. 2006;37:199-205.
Nadal D, Böni J, Kind C, Varnier OE, Steiner F, Tomasik Z, et al. Prospective evaluation of amplification-boosted ELISA for heat-denatured p24 antigen for diagnosis and monitoring of pediatric human immunodeficiency virus type 1 infection. J Infect Dis. 1999;180:1089-95.
Van Braeckel E, Desombere I, Clement F, Vandekerckhove L, Verhofstade C, Vogelaers D, et al. Polyfunctional CD4(+) T cell responses in HIV-1-infected viral controllers compared with those in healthy recipients of an adjuvanted polyprotein HIV-1 vaccine. Vaccine. 2013;31:3739-46.
Dyer WB, Zaunders JJ, Yuan FF, Wang B, Learmont JC, Geczy AF, et al. Mechanisms of HIV non-progression; robust and sustained CD4+ T-cell proliferative responses to p24 antigen correlate with control of viraemia and lack of disease progression after long-term transfusion-acquired HIV-1 infection. Retrovirology. 2008;5:112.
Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 1997;278:1447-50.
Ogg GS, Jin X, Bonhoeffer S, Dunbar PR, Nowak MA, Monard S, et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science. 1998;279:2103-6.
Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, Moodley E, et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med. 2007;13:46-53.
Gloster SE, Newton P, Cornforth D, Lifson JD, Williams I, Shaw GM, et al. Association of strong virus-specific CD4 T cell responses with efficient natural control of primary HIV-1 infection. AIDS. 2004;18:749-55.
Ranasinghe S, Flanders M, Cutler S, Soghoian DZ, Ghebremichael M, Davis I, et al. HIV-specific CD4 T cell responses to different viral proteins have discordant associations with viral load and clinical outcome. J Virol. 2012;86:277-83.
Kannanganat S, Kapogiannis BG, Ibegbu C, Chennareddi L, Goepfert P, Robinson HL, et al. Human immunodeficiency virus type 1 controllers but not noncontrollers maintain CD4 T cells coexpressing three cytokines. J Virol. 2007;81:12071-6.
Kannanganat S, Ibegbu C, Chennareddi L, Robinson HL, Amara RR. Multiple-cytokine-producing antiviral CD4 T cells are functionally superior to single-cytokine-producing cells. J Virol. 2007;81:8468-76.
Edwards BH, Bansal A, Sabbaj S, Bakari J, Mulligan MJ, Goepfert PA. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol. 2002;76:2298-305.
Turnbull EL, Wong M, Wang S, Wei X, Jones NA, Conrod KE, et al. Kinetics of expansion of epitope-specific T cell responses during primary HIV-1 infection. J Immunol. 2009;182:7131-45.
Nascimento IP, Leite LCC. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res. 2012;45:1102-11.
Xu R, Nasar F, Megati S, Luckay A, Lee M, Udem SA, et al. Prime-boost vaccination with recombinant mumps virus and recombinant vesicular stomatitis virus vectors elicits an enhanced human immunodeficiency virus type 1 Gag-specific cellular immune response in rhesus macaques. J Virol. 2009;83:9813-23.
Fuchs JD, Frank I, Elizaga ML, Allen M, Frahm N, Kochar N, et al. First-in-human evaluation of the safety and immunogenicity of a recombinant vesicular stomatitis virus human immunodeficiency virus-1 gag vaccine (Hvtn 090). Open Forum Infect Dis. 2015;2:ofv082.
Nicholson O, DiCandilo F, Kublin J, et al. Safety and immunogenicity of the MRKAd5 gag HIV type 1 vaccine in a worldwide phase 1 study of healthy adults. AIDS Res Hum Retrovir. 2011;27:557-67.
Sheets RL, Zhou T, Knezevic I. Review of efficacy trials of HIV-1/AIDS vaccines and regulatory lessons learned: A review from a regulatory perspective. Biologicals. 2016;44:73-89.
Schooley RT, Spritzler J, Wang H, Lederman MM, Havlir D, Kuritzkes DR, et al. AIDS clinical trials group 5197: a placebo-controlled trial of immunization of HIV-1-infected persons with a replication- deficient adenovirus type 5 vaccine expressing the HIV-1 core protein. J Infect Dis. 2010;202:705-16.
Khan KH. DNA vaccines: roles against diseases. Germs. 2013;3:26-35.
Kalams SA, Parker S, Jin X, Elizaga M, Metch B, Wang M, et al. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults. PloS One. 2012;7:e29231.
Tavel JA, Martin JE, Kellu GG, Enama ME, Shen JM, Gomez PL, et al. Safety and immunogenicity of a Gag-Pol candidate HIV-1 DNA vaccine administered by a needle-free device in HIV-1-seronegative subjects. J Acquir Immune Defic Syndr. 1999;44:601-5.
Sokolowska E, Blachnio-Zabielska AU. A critical review of electroporation as a plasmid delivery system in mouse skeletal muscle. Int J Mol Sci. 2019;20:2776.
Vasan S, Hurley A, Schlesinger SJ, Hannaman D, Gardiner DF, Dugin DP, et al. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One. 2011;6:e19252.
Hanke T, McMichael AJ. Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med. 2000;6:951-5.
Mwau M, Cebere I, Sutton J, Chikoti P, Winstone N, Wee EGT, et al. A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. J Gen Virol. 2004;85:911-9.
Guimaraes-Walker A, Mackie N, Mc- Cormack S, Schmidt C, Gilmour J, Barin B, et al. Lessons from IAVI-006, a phase I clinical trial to evaluate the safety and immunogenicity of the pTHr.HIVA DNA and MVA.HIVA vaccines in a prime-boost strategy to induce HIV-1 specific T-cell responses in healthy volunteers. Vaccine. 2008;26:6671-7.
Chroboczek J, Szurgot I, Szolajska E. Virus-like particles as vaccine. Acta Biochim Pol. 2014;61:531-9.
Veenstra J, Williams IG, Colebunders R, Dorrel L, Tchamouroff SE, Patou G, et al. Immunization with recombinant p17/ p24:Ty virus-like particles in human immunodeficiency virus-infected persons. J Infect Dis. 1996;174:862-6.
Lindenburg CE, Stolte I, Langendam MW, Miedema F, Williams IG, Colebunders R, et al. Long-term follow-up: no effect of therapeutic vaccination with HIV-1 p17/ p24:Ty virus-like particles on HIV-1 disease progression. Vaccine. 2002;20:2343-7.
Kelleher AD, Roggensack M, Jaramillo AB, Smith DE, Walker A, Gow I, et al. Safety and immunogenicity of a candidate therapeutic vaccine, p24 virus-like particle, combined with zidovudine, in asymptomatic subjects. Community HIV Research Network Investigators. AIDS. 1998;12:175-82.
Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: Progress and challenges. Vaccines (Basel). 2014;2:515-36.
Asjö B, Stavang H, Sørensen B, Baksaas I, Nyhus J, Langeland N. Phase I trial of a therapeutic HIV type 1 vaccine, Vacc-4x, in HIV type 1-infected individuals with or without antiretroviral therapy. AIDS Res Human Retrovir. 2002;18:1357-65.
Brekke K, Lind A, Holm-Hansen C, Lise Haugen I, Sørensen B, Sommerfelt M, et al. Intranasal administration of a therapeutic HIV vaccine (Vacc-4x) induces dose-dependent systemic and mucosal immune responses in a randomized controlled trial. PloS One. 2014;9:e112556.
Leth S, Schleimann MH, Nissen SK, Højen JF, Olesen R, Graversen ME, et al. Combined effect of Vacc-4x, recombinant human granulocyte macrophage colonystimulating factor vaccination, and romidepsin on the HIV-1 reservoir (REDUC): a single-arm, phase 1B/2A trial. Lancet HIV. 2016;3:e463-72.