2019, Número 4
Siguiente >>
Biotecnol Apl 2019; 36 (4)
Relevancia del antígeno Gag para el desarrollo de candidatos vacunales contra el VIH-1
Fresneda-Mora AB, Rodríguez-Alonso I, Iglesias E
Idioma: Ingles.
Referencias bibliográficas: 60
Paginas: 4201-4209
Archivo PDF: 347.26 Kb.
RESUMEN
Gag es una de las proteínas más conservadas del VIH-1. Se ha demostrado que las regiones invariables de este antígeno son críticas para la capacidad replicativa viral y la respuesta de células T específicas contra Gag se ha asociado con una menor carga viral. Por ello, el antígeno Gag completo del VIH-1 o sus epitopos específicos se han incluido regularmente en los candidatos vacunales contra este virus. En esta revisión se explora el uso de Gag o algunos de sus fragmentos como antígenos en los candidatos vacunales contra el VIH-1 que han sido evaluados en ensayos clínicos. Los candidatos vacunales analizados, según la tecnología vacunal en la cual se basan, son: vectores virales vacunales basados en el virus de la estomatitis vesicular y en adenovirus de replicación deficiente, vacunas de ADN solas o mediante estrategias de sensibilización y potenciación con virus Vaccinia Ankara recombinantes modificados, la tecnología de partículas similares a virus, y las vacunas basadas en péptidos sintéticos. El análisis presentado demuestra la racionalidad de la inclusión de antígenos derivados de la proteína Gag en todos los candidatos vacunales preventivos o terapéuticos a desarrollados contra el VIH-1.
REFERENCIAS (EN ESTE ARTÍCULO)
Montagnier L. Historical essay. A history of HIV discovery. Science. 2002;298:1727-8.
Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, et al. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science. 1984;224:500-3.
UNAIDS. Global AIDS Update 2016. Geneva: UNAIDS; 2016.
Gray GE, Laher F, Lazarus E, Ensoli B, Corey L. Approaches to preventative and therapeutic HIV vaccines. Curr Opin Virol. 2016;17:104-9.
Passaes CP, Sáez-Cirion A. HIV cure research: advances and prospects. Virology. 2014;454-455:340-52.
Mali SN, Sapkal PM. HIV drug resistance: An overview. Int J Res Method. 2015;1:72-82.
de Goede AL, Vulto AG, Osterhaus ADME, Gruters RA. Understanding HIV infection for the design of a therapeutic vaccine. Part II: Vaccination strategies for HIV. Ann Pharm Fr. 2015;73:169-79.
de Goede AL, Vulto AG, Osterhaus ADME, Gruters RA. Understanding HIV infection for the design of a therapeutic vaccine. Part I: Epidemiology and pathogenesis of HIV infection. Ann Pharm Fr. 2015;73:87-99.
Schüpbach J. Viral RNA and p24 antigen as markers of HIV disease and antiretroviral treatment success. Int Arch Allergy Immunol. 2003;132:196-209.
Tritel M, Resh MD. Kinetic analysis of human immunodeficiency virus type 1 assembly reveals the presence of sequential intermediates. J Virol. 2000;74:5845-55.
Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med. 2015;66:423-37.
Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/ founder viruses in acute and early HIV-1 infection. J Exp Med. 2009;206:1273-89.
Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004;200:749-59.
Février M, Dorgham K, Rebollo A. CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses. 2011;3:586-612.
Fiorentini S, Marini E, Caracciolo S, Caruso A. Functions of the HIV-1 matrix protein p17. New Microbiol. 2006;29:1-10.
Baum LL. Role of humoral immunity in host defense against HIV. Current HIV/ AIDS Rep. 2010;7:11-8.
Overbaugh J, Morris L. The antibody response against HIV-1. Cold Spring Harb Perspect Med. 2012;2:a007039.
Li G, Verheyen J, Rhee SY, Voet A, Vandamme AM, Theys K. Functional conservation of HIV-1 Gag: implications for rational drug design. Retrovirology. 2013;10:126.
Wright JK, Brumme ZL, Carlson JM, Heckerman D, Kadie CM, Brumme CJ, et al. Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: associations with HLA type and clinical parameters. J Virol. 2010;84:10820-31.
Narwa R, Roques P, Courpotin C, Parnet-Mathieu F, Boussin F, Roane A, et al. Characterization of human immunodeficiency virus type 1 p17 matrix protein motifs associated with mother-to-child transmission. J Virol. 1996;70:4474-83.
Grossman Z, Meier-Schellersheim M, Paul WE, Picker LJ. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nat Med. 2006;12:289-95.
McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol. 2010;10:11-23.
Ndongala ML, Peretz Y, Boulet S, Doroudchi M, Yassine-Diab B, Boulassel MR, et al. HIV Gag p24 specific responses secreting IFN-gamma and/or IL-2 in treatmentnaive individuals in acute infection early disease (AIED) are associated with low viral load. Clin Immunol. 2009;131:277-87.
Altfeld M, Rosenberg ES. The role of CD4(+) T helper cells in the cytotoxic T lymphocyte response to HIV-1. Curr Opin Immunol. 2000;12:375-80.
García Ribas S, Ondoa P, Schüpbach J, van der Groen G, Fransen K. Performance of a quantitative human immunodeficiency virus type 1 p24 antigen assay on various HIV-1 subtypes for the follow-up of human immunodeficiency type 1 seropositive individuals. J Virol Methods. 2003;113:29-34.
Tehe A, Maurice C, Hanson DL, Borget MY, Abiola N, Maran M, et al. Quantification of HIV-1 p24 by a highly improved ELISA: an alternative to HIV-1 RNA based treatment monitoring in patients from Abidjan, Cote d’Ivoire. J Clin Virol. 2006;37:199-205.
Nadal D, Böni J, Kind C, Varnier OE, Steiner F, Tomasik Z, et al. Prospective evaluation of amplification-boosted ELISA for heat-denatured p24 antigen for diagnosis and monitoring of pediatric human immunodeficiency virus type 1 infection. J Infect Dis. 1999;180:1089-95.
Van Braeckel E, Desombere I, Clement F, Vandekerckhove L, Verhofstade C, Vogelaers D, et al. Polyfunctional CD4(+) T cell responses in HIV-1-infected viral controllers compared with those in healthy recipients of an adjuvanted polyprotein HIV-1 vaccine. Vaccine. 2013;31:3739-46.
Dyer WB, Zaunders JJ, Yuan FF, Wang B, Learmont JC, Geczy AF, et al. Mechanisms of HIV non-progression; robust and sustained CD4+ T-cell proliferative responses to p24 antigen correlate with control of viraemia and lack of disease progression after long-term transfusion-acquired HIV-1 infection. Retrovirology. 2008;5:112.
Rosenberg ES, Billingsley JM, Caliendo AM, Boswell SL, Sax PE, Kalams SA, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science. 1997;278:1447-50.
Ogg GS, Jin X, Bonhoeffer S, Dunbar PR, Nowak MA, Monard S, et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science. 1998;279:2103-6.
Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, Moodley E, et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med. 2007;13:46-53.
Gloster SE, Newton P, Cornforth D, Lifson JD, Williams I, Shaw GM, et al. Association of strong virus-specific CD4 T cell responses with efficient natural control of primary HIV-1 infection. AIDS. 2004;18:749-55.
Ranasinghe S, Flanders M, Cutler S, Soghoian DZ, Ghebremichael M, Davis I, et al. HIV-specific CD4 T cell responses to different viral proteins have discordant associations with viral load and clinical outcome. J Virol. 2012;86:277-83.
Kannanganat S, Kapogiannis BG, Ibegbu C, Chennareddi L, Goepfert P, Robinson HL, et al. Human immunodeficiency virus type 1 controllers but not noncontrollers maintain CD4 T cells coexpressing three cytokines. J Virol. 2007;81:12071-6.
Kannanganat S, Ibegbu C, Chennareddi L, Robinson HL, Amara RR. Multiple-cytokine-producing antiviral CD4 T cells are functionally superior to single-cytokine-producing cells. J Virol. 2007;81:8468-76.
Edwards BH, Bansal A, Sabbaj S, Bakari J, Mulligan MJ, Goepfert PA. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol. 2002;76:2298-305.
Turnbull EL, Wong M, Wang S, Wei X, Jones NA, Conrod KE, et al. Kinetics of expansion of epitope-specific T cell responses during primary HIV-1 infection. J Immunol. 2009;182:7131-45.
Nascimento IP, Leite LCC. Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res. 2012;45:1102-11.
Xu R, Nasar F, Megati S, Luckay A, Lee M, Udem SA, et al. Prime-boost vaccination with recombinant mumps virus and recombinant vesicular stomatitis virus vectors elicits an enhanced human immunodeficiency virus type 1 Gag-specific cellular immune response in rhesus macaques. J Virol. 2009;83:9813-23.
Fuchs JD, Frank I, Elizaga ML, Allen M, Frahm N, Kochar N, et al. First-in-human evaluation of the safety and immunogenicity of a recombinant vesicular stomatitis virus human immunodeficiency virus-1 gag vaccine (Hvtn 090). Open Forum Infect Dis. 2015;2:ofv082.
Nicholson O, DiCandilo F, Kublin J, et al. Safety and immunogenicity of the MRKAd5 gag HIV type 1 vaccine in a worldwide phase 1 study of healthy adults. AIDS Res Hum Retrovir. 2011;27:557-67.
Sheets RL, Zhou T, Knezevic I. Review of efficacy trials of HIV-1/AIDS vaccines and regulatory lessons learned: A review from a regulatory perspective. Biologicals. 2016;44:73-89.
Schooley RT, Spritzler J, Wang H, Lederman MM, Havlir D, Kuritzkes DR, et al. AIDS clinical trials group 5197: a placebo-controlled trial of immunization of HIV-1-infected persons with a replication- deficient adenovirus type 5 vaccine expressing the HIV-1 core protein. J Infect Dis. 2010;202:705-16.
Khan KH. DNA vaccines: roles against diseases. Germs. 2013;3:26-35.
Kalams SA, Parker S, Jin X, Elizaga M, Metch B, Wang M, et al. Safety and immunogenicity of an HIV-1 gag DNA vaccine with or without IL-12 and/or IL-15 plasmid cytokine adjuvant in healthy, HIV-1 uninfected adults. PloS One. 2012;7:e29231.
Tavel JA, Martin JE, Kellu GG, Enama ME, Shen JM, Gomez PL, et al. Safety and immunogenicity of a Gag-Pol candidate HIV-1 DNA vaccine administered by a needle-free device in HIV-1-seronegative subjects. J Acquir Immune Defic Syndr. 1999;44:601-5.
Sokolowska E, Blachnio-Zabielska AU. A critical review of electroporation as a plasmid delivery system in mouse skeletal muscle. Int J Mol Sci. 2019;20:2776.
Vasan S, Hurley A, Schlesinger SJ, Hannaman D, Gardiner DF, Dugin DP, et al. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One. 2011;6:e19252.
Hanke T, McMichael AJ. Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med. 2000;6:951-5.
Mwau M, Cebere I, Sutton J, Chikoti P, Winstone N, Wee EGT, et al. A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. J Gen Virol. 2004;85:911-9.
Guimaraes-Walker A, Mackie N, Mc- Cormack S, Schmidt C, Gilmour J, Barin B, et al. Lessons from IAVI-006, a phase I clinical trial to evaluate the safety and immunogenicity of the pTHr.HIVA DNA and MVA.HIVA vaccines in a prime-boost strategy to induce HIV-1 specific T-cell responses in healthy volunteers. Vaccine. 2008;26:6671-7.
Chroboczek J, Szurgot I, Szolajska E. Virus-like particles as vaccine. Acta Biochim Pol. 2014;61:531-9.
Veenstra J, Williams IG, Colebunders R, Dorrel L, Tchamouroff SE, Patou G, et al. Immunization with recombinant p17/ p24:Ty virus-like particles in human immunodeficiency virus-infected persons. J Infect Dis. 1996;174:862-6.
Lindenburg CE, Stolte I, Langendam MW, Miedema F, Williams IG, Colebunders R, et al. Long-term follow-up: no effect of therapeutic vaccination with HIV-1 p17/ p24:Ty virus-like particles on HIV-1 disease progression. Vaccine. 2002;20:2343-7.
Kelleher AD, Roggensack M, Jaramillo AB, Smith DE, Walker A, Gow I, et al. Safety and immunogenicity of a candidate therapeutic vaccine, p24 virus-like particle, combined with zidovudine, in asymptomatic subjects. Community HIV Research Network Investigators. AIDS. 1998;12:175-82.
Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: Progress and challenges. Vaccines (Basel). 2014;2:515-36.
Asjö B, Stavang H, Sørensen B, Baksaas I, Nyhus J, Langeland N. Phase I trial of a therapeutic HIV type 1 vaccine, Vacc-4x, in HIV type 1-infected individuals with or without antiretroviral therapy. AIDS Res Human Retrovir. 2002;18:1357-65.
Brekke K, Lind A, Holm-Hansen C, Lise Haugen I, Sørensen B, Sommerfelt M, et al. Intranasal administration of a therapeutic HIV vaccine (Vacc-4x) induces dose-dependent systemic and mucosal immune responses in a randomized controlled trial. PloS One. 2014;9:e112556.
Leth S, Schleimann MH, Nissen SK, Højen JF, Olesen R, Graversen ME, et al. Combined effect of Vacc-4x, recombinant human granulocyte macrophage colonystimulating factor vaccination, and romidepsin on the HIV-1 reservoir (REDUC): a single-arm, phase 1B/2A trial. Lancet HIV. 2016;3:e463-72.