2021, Number 1
Nanobodies: Biotechnological development and applications
Language: Spanish
References: 88
Page:
PDF size: 342.51 Kb.
ABSTRACT
Monoclonal antibodies are one the most revolutionary tools in the biomedicine area for having immunotherapeutic and immunodiagnostic applications. However, the rapid technological advance demanded by these areas generates the exploration of new biomolecules. The discovery of antibodies composed solely of heavy chains, naturally present in the camelids’ serum and some shark species, has been the subject of study since the last decades as an alternative to conventional antibodies. These have an antigen recognition region, which consists of a variable domain for each chain, known as single domain antibodies or nanobodies. These biomolecules are characterized by having a small size, high specificity, stability, and low cost in their production; properties that make them a highly versatile tool. This review will address relevant aspects of nanobodies, such as their discovery, structural characteristics, development in the field of biotechnology, and their potential for application in diseases such as cancer and in the identification of microorganisms.REFERENCES
Amcheslavsky, A., Wallace, A. L., Ejemel, M., Li, Q., McMahon, C. T., Stoppato, M., Giuntini, S., Schiller, Z. A., Pondish, J. R., Toomey, J. R., Schneider, R. M., Meisinger, J., Heukers, R., Kruse, A. C., Barry, E. M., Pierce, B. G., Klempner, M. S., Cavacini, L. A. & Wang, Y. (2021). Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design. Scientific Reports, 11(1), 2751. DOI: https://doi.org/10.1038/s41598-021-81895-0
Andersen, K. K., Strokappe, N. M., Hultberg, A., Truusalu, K., Smidt, I., Mikelsaar, R. H., Mikelsaar, M., Verrips, T., Hammarström, L. & Marcotte, H. (2015). Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies. Infection and Immunity, 84(2), 395–406. DOI: https://doi. org/10.1128/IAI.00870-15
Bailon, H., Yaniro, V. O., Cáceres, O. A., Colque, E. G., Leiva, W. J., Padilla, C., Montejo, H., García, D., Galarza, M., Bonilla, C., Tintaya, B., Ricciardi, G., Smiejkowska, N., Romão, E., Vincke, C., Lévano, J., Celys, M., Lomonte, B. & Muyldermans, S. (2020). Development of nanobodies against hemorrhagic and myotoxic components of Bothrops atrox snake venom.Frontiers in Immunology, 11, 655. DOI: https://doi.org/10.3389/fimmu.2020.00655
Bridoux, J., Neyt, S., Debie, P., Descamps, B., Devoogdt, N., Cleeren, F., Bormans, G., Broisat, A., Caveliers, V., Xavier, C., Vanhove, C. & Hernot, S. (2020). Improved Detection of Molecular Markers of Atherosclerotic Plaques Using Sub-Millimeter PET Imaging. Molecules, 25(8), 1838. DOI: https://doi.org/10.3390/molecules25081838
Chen, F., Ma, H., Li, Y., Wang, H., Samad, A., Zhou, J., Zhu, L., Zhang, Y., He, J., Fan, X. & Jin, T. (2019). Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. Journal of Agricultural and Food Chemistry, 67(40), 11219–11229. DOI: https://doi.org/10.1021/acs. jafc.9b02388
Dass, S. A., Norazmi, M. N., Acosta, A., Sarmiento, M. E. & Tye, G. J. (2020). TCR-like domain antibody against Mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A*11 and HLA-A*24. International Journal of Biological macromolecules, 155, 305–314. DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.229
De Groof, T., Mashayekhi, V., Fan, T. S., Bergkamp, N. D., Sastre Toraño, J., van Senten, J. R., Heukers, R., Smit, M. J. & Oliveira, S. (2019). Nanobody- Targeted Photodynamic Therapy Selectively Kills Viral GPCR-Expressing Glioblastoma Cells. Molecular Pharmaceutics, 16(7), 3145–3156. DOI: https://doi. org/10.1021/acs.molpharmaceut.9b00360
De Vos, J., Devoogdt, N., Lahoutte, T. & Muyldermans, S. (2013). Camelid single-domain antibody-fragment engineering for (pre) clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert opinion on biological therapy, 13(8), 1149-1160. DOI: https://doi.org/10.1517/1 4712598.2013.800478
Deckers, N., Saerens, D., Kanobana, K., Conrath, K., Victor, B., Wernery, U., Vercruysse, J., Muyldermans, S. & Dorny, P. (2009). Nanobodies, a promising tool for species-specific diagnosis of Taenia solium cysticercosis. International Journal for Parasitology, 39(5), 625–633. DOI: https:// doi.org/10.1016/j.ijpara.2008.10.012
Deken, M. M., Kijanka, M. M., Beltrán Hernández, I., Slooter, M. D., de Bruijn, H. S., van Diest, P. J., van Bergen En Henegouwen, P., Lowik, C., Robinson, D. J., Vahrmeijer, A. L. & Oliveira, S. (2020). Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumabresistant HER2-positive breast cancer, after a single treatment session. Journal of Controlled Release: Official Journal of the Controlled Release Society, 323, 269–281. DOI: https://doi.org/10.1016/j.jconrel.2020.04.030
Goldman, E. R., Anderson, G. P., Liu, J. L., Delehanty, J. B., Sherwood, L. J., Osborn, L. E., Cummins, L. B. & Hayhurst, A. (2006). Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Analytical Chemistry, 78(24), 8245–8255. DOI: https://doi.org/10.1021/ac0610053
Hassani, M., Hajari Taheri, F., Sharifzadeh, Z., Arashkia, A., Hadjati, J., van Weerden, W. M., Abdoli, S., Modarressi, M. H. & Abolhassani, M. (2020). Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor. Iranian Biomedical Journal, 24(2), 81–88. DOI: https://doi.org/10.29252/ibj.24.2.81
He, Y., Ren, Y., Guo, B., Yang, Y., Ji, Y., Zhang, D., Wang, J., Wang, Y. & Wang, H. (2020). Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. Food Chemistry, 310, 125942. DOI: https://doi.org/10.1016/j. foodchem.2019.125942
Hollifield, A. L., Arnall, J. R. & Moore, D. C. (2020). Caplacizumab: an anti-von Willebrand factor antibody for the treatment of thrombotic thrombocytopenic purpura. American journal of health-system pharmacy: AJHP. Official Journal of the American Society of Health- System Pharmacists, 77(15), 1201–1207. DOI: https://doi. org/10.1093/ajhp/zxaa151
Jailkhani, N., Ingram, J. R., Rashidian, M., Rickelt, S., Tian, C., Mak, H., Jiang, Z., Ploegh, H. L. & Hynes, R. O. (2019). Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America, 116(28), 14181–14190. DOI: https://doi.org/10.1073/pnas.1817442116
Kalusche, S., Vanshylla, K., Kleipass, F., Gruell, H., Müller, B., Zeng, Z., Koch, K., Stein, S., Marcotte, H., Klein, F. & Dietrich, U. (2020). Lactobacilli Expressing Broadly Neutralizing Nanobodies against HIV-1 as Potential Vectors for HIV-1 Prophylaxis? Vaccines, 8(4), 758. DOI: https:// doi.org/10.3390/vaccines8040758
Keyaerts, M., Xavier, C., Heemskerk, J., Devoogdt, N., Everaert, H., Ackaert, C., Vanhoeij, M., Duhoux, F. P., Gevaert, T., Simon, P., Schallier, D., Fontaine, C., Vaneycken, I., Vanhove, C., De Greve, J., Lamote, J., Caveliers, V. & Lahoutte, T. (2016). Phase I Study of 68Ga-HER2- Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 57(1), 27–33. DOI: https://doi.org/10.2967/jnumed.115.162024
Klarenbeek, A., El Mazouari, K., Desmyter, A., Blanchetot, C., Hultberg, A., de Jonge, N., Roovers, R. C., Cambillau, C., Spinelli, S., Del-Favero, J., Verrips, T., de Haard, H. J. & Achour, I. (2015). Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform. mAbs, 7(4), 693–706. DOI: https://doi.org/10.1080/1942 0862.2015.1046648
Lam, K. H., Tremblay, J. M., Vazquez-Cintron, E., Perry, K., Ondeck, C., Webb, R. P., McNutt, P. M., Shoemaker, C. B. & Jin, R. (2020). Structural Insights into Rational Design of Single-Domain Antibody-Based Antitoxins against Botulinum Neurotoxins. Cell Reports, 30(8), 2526–2539. e6. DOI: https://doi.org/10.1016/j.celrep.2020.01.107
Li, W., Schäfer, A., Kulkarni, S. S., Liu, X., Martinez, D. R., Chen, C., Sun, Z., Leist, S. R., Drelich, A., Zhang, L., Ura, M. L., Berezuk, A., Chittori, S., Leopold, K., Mannar, D., Srivastava, S. S., Zhu, X., Peterson, E. C., Tseng, C. T., Mellors, J. W. & Dimitrov, D. S. (2020). High Potency of a Bivalent Human VH Domain in SARS-CoV-2 Animal Models. Cell, 183(2), 429–441.e16. DOI: https://doi. org/10.1016/j.cell.2020.09.007
Mazzega, E., Beran, A., Cabrini, M. & de Marco, A. (2019). In vitro isolation of nanobodies for selective Alexandrium minutum recognition: a model for convenient development of dedicated immuno-reagents to study and diagnostic toxic unicellular algae. Harmful Algae, 82, 44-51. DOI: https:// doi.org/10.1016/j.hal.2019.01.002
Morales-Yanez, F. J., Sariego, I., Vincke, C., Hassanzadeh- Ghassabeh, G., Polman, K. & Muyldermans, S. (2019). An innovative approach in the detection of Toxocara canis excretory/secretory antigens using specific nanobodies. International Journal for Parasitology, 49(8), 635–645. DOI: https://doi.org/10.1016/j.ijpara.2019.03.004
Nuttall, S. D., Krishnan, U. V., Hattarki, M., De Gori, R., Irving, R. A. & Hudson, P. J. (2001). Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Molecular Immunology, 38(4), 313–326. DOI: https://doi.org/10.1016/ s0161-5890(01)00057-8
Odegrip, R., Coomber, D., Eldridge, B., Hederer, R., Kuhlman, P. A., Ullman, C., FitzGerald, K. & McGregor, D. (2004). CIS display: in vitro selection of peptides from libraries of protein–DNA complexes. Proceedings of the National Academy of Sciences, 101(9), 2806-2810. DOI: https://doi. org/10.1073/pnas.0400219101
Oloketuyi, S., Mazzega, E., Zavašnik, J., Pungjunun, K., Kalcher, K., De Marco, A. & Mehmeti, E. (2020). Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae Alexandrium minutum using glassy carbon electrode modified with gold nanoparticles. Biosensors a d Bioelectronics, 154, 112052. DOI: https://doi.org/10.1016/j.bios.2020.112052
Ortega, P. A., Silva-Miranda, M., Torres-Larios, A., Campos- Chávez, E., Franken, K., Ottenhoff, T., Ivanyi, J. & Espitia, C. (2020). Selection of a Single Domain Antibody, Specific for an HLA-Bound Epitope of the Mycobacterial Ag85B Antigen. Frontiers in Immunology, 11, 577815. DOI: https:// doi.org/10.3389/fimmu.2020.577815
Pinto Torres, J. E., Goossens, J., Ding, J., Li, Z., Lu, S., Vertommen, D., Naniima, P., Chen, R., Muyldermans, S., Sterckx, Y. G. & Magez, S. (2018). Development of a Nanobody-based lateral flow assay to detect active Trypanosoma congolense infections. Scientific Reports, 8(1), 9019. DOI:10.1038/s41598-018-26732-7
Ren, X., Yue, X., Mwakinyali, S. E., Zhang, W., Zhang, Q. & Li, P. (2020). Small Molecular Contaminant and Microorganism Can Be Simultaneously Detected Based on Nanobody-Phage: Using Carcinogen Aflatoxin and Its Main Fungal Aspergillus Section Flavi spp. in Stored Maize for Demonstration. Frontiers in Microbiology, 10, 3023. DOI: https://doi.org/10.3389/fmicb.2019.03023
Roshan, R., Naderi, S., Behdani, M., Cohan, R. A., Ghaderi, H., Shokrgozar, M. A., Golkar, M. & Kazemi- Lomedasht, F. (2021). Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Molecular Immunology, 129, 70–77. DOI: https://doi.org/10.1016/j. molimm.2020.10.021
Sockolosky, J. T., Dougan, M., Ingram, J. R., Ho, C. C., Kauke, M. J., Almo, S. C., Ploegh, H. L. & Garcia, K. C. (2016). Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proceedings of the National Academy of Sciences of the United States of America, 113(19), 2646–2654. DOI: https://doi.org/10.1073/ pnas.1604268113
Valdez-Cruz, N. A., García-Hernández, E., Espitia, C., Cobos-Marín, L., Altamirano, C., Bando-Campos, C. G., Cofas-Vargas, L. F., Coronado-Aceves, E. W., González- Hernández, R. A., Hernández-Peralta, P., Juárez-López, D., Ortega-Portilla, P. A., Restrepo-Pineda, S., Zelada-Cordero, P. & Trujillo-Roldán, M. A. (2021). Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microbial Cell Factories, 20(1), 88. DOI: https://doi. org/10.1186/s12934-021-01576-5
Vincke, C., Loris, R., Saerens, D., Martinez-Rodriguez, S., Muyldermans, S. & Conrath, K. (2009). General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. The Journal of Biological Chemistry, 284(5), 3273–3284. DOI: https://doi.org/10.1074/jbc.M806889200
Wrapp, D., De Vlieger, D., Corbett, K. S., Torres, G. M., Wang, N., Van Breedam, W., Roose, K., van Schie, L., VIB-CMB COVID-19 Response Team, Hoffmann, M., Pöhlmann, S., Graham, B. S., Callewaert, N., Schepens, B., Saelens, X. & McLellan, J. S. (2020). Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell, 181(6), 1436–1441. DOI: https:// doi.org/10.1016/j.cell.2020.04.031
Xie, Y. J., Dougan, M., Ingram, J. R., Pishesha, N., Fang, T., Momin, N. & Ploegh, H. L. (2020). Improved Antitumor Efficacy of Chimeric Antigen Receptor T Cells that Secrete Single-Domain Antibody Fragments. Cancer Immunology Research, 8(4), 518–529. DOI: https://doi. org/10.1158/2326-6066.CIR-19-0734
Xing, Y., Chand, G., Liu, C., Cook, G., O’Doherty, J., Zhao, L., Wong, N., Meszaros, L. K., Ting, H. H. & Zhao, J. (2019). Early Phase I Study of a 99mTc-Labeled Anti-Programmed Death Ligand-1 (PD-L1) Single-Domain Antibody in SPECT/CT Assessment of PD-L1 Expression in Non-Small Cell Lung Cancer. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 60(9), 1213– 1220. DOI: https://doi.org/10.2967/jnumed.118.224170
Xu, C., Liu, X., Zhang, C., Zhang, X., Zhong, J., Liu, Y., Hu, X.,Lin, M. & Liu, X. (2017). Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library. Analytical Biochemistry, 518, 53-59. DOI: https://doi.org/10.1016/j.ab.2016.11.006