2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Las galectinas en la coagulación sanguínea
Fernández-Rojas B, Arreola-Díaz R, Hernández-Cruz PA, Gallegos-Velasco IB, Solórzano-Mata CJ, Argueta-Figueroa L, Hernández-Juárez J
Idioma: Español
Referencias bibliográficas: 36
Paginas:
Archivo PDF: 258.90 Kb.
RESUMEN
La hemostasia es un fenómeno de alto valor biológico que comprende la participación de elementos celulares y plasmáticos a
través de los que se forman coágulos en los sitios de lesión vascular para evitar que las personas mueran a causa de una hemorragia.
Por el contrario, en la trombosis, se forma un coágulo patológico o trombo que obstruye el flujo sanguíneo afectando a tejidos y
órganos, lo que puede llevar a la muerte.
Por su parte, las galectinas son un grupo de proteínas de la familia de las lectinas, que, no poseen actividad enzimática ni tienen
un origen inmune, pero reconocen a carbohidratos específicos en las células. Se ha demostrado su contribución en procesos
fisiológicos y patológicos, como el cáncer y la aterosclerosis. En esta revisión se describirá, el papel de la galectina-1 (Gal-1),
la galectina-3 (Gal-3) y la galectina-8 (Gal-8) en el proceso hemostático, así como los hallazgos más recientes que sugieren su
probable participación en las trombosis.
REFERENCIAS (EN ESTE ARTÍCULO)
Agnello, L., Bivona, G., Lo Sasso, B., Scazzone, C., Bazan, V., Bellia, C. & Ciaccio, M. (2017). Galectin-3 in acute coronary syndrome. Clinical biochemistry, 50(13-14), 797–803. https://doi.org/10.1016/j.clinbiochem.2017.04.018.
Brinchmann, M. F., Patel, D. M. & Iversen, M. H. (2018). The Role of Galectins as Modulators of Metabolism and Inflammation. Mediators of inflammation, 2018, 9186940. https://doi.org/10.1155/2018/9186940.
Cattaneo, V., Tribulatti, M. V., Carabelli, J., Carestia, A., Schattner, M. & Campetella, O. (2014). Galectin-8 elicits pro-inflammatory activities in the endothelium. Glycobiology, 24(10), 966–973. https://doi.org/10.1093/ glycob/cwu060.
Chapin, J. C. & Hajjar, K. A. (2015). Fibrinolysis and the control of blood coagulation. Blood Reviews, 29(1), 17–24. https:// doi.org/10.1016/j.blre.2014.09.003.
Chou, F. C., Chen, H. Y., Kuo, C. C. & Sytwu, H. K. (2018). Role of Galectins in Tumors and in Clinical Immunotherapy. International Journal of Molecular Sciences, 19(2), 430. https://doi.org/10.3390/ijms19020430.
Darrow, A. L. & Shohet, R. V. (2015). Galectin-3 deficiency exacerbates hyperglycemia and the endothelial response to diabetes. Cardiovascular Diabetology, 14, 73. https:// doi.org/10.1186/s12933-015-0230-3.
DeRoo, E. P., Wrobleski, S. K., Shea, E. M., Al-Khalil, R. K., Hawley, A. E., Henke, P. K., Myers, D. D., Jr., Wakefield, T. W. & Diaz, J. A. (2015). The role of galectin-3 and galectin-3-binding protein in venous thrombosis. Blood, 125(11), 1813–1821. https://doi.org/10.1182/ blood-2014-04-569939.
Dings, R., Miller, M. C., Griffin, R. J. & Mayo, K. H. (2018). Galectins as Molecular Targets for Therapeutic Intervention. International Journal of Molecular Sciences, 19(3), 905. https://doi.org/10.3390/ijms19030905.
Fashanu, O. E., Heckbert, S. R., Aguilar, D., Jensen, P. N., Ballantyne, C. M., Basu, S., Hoogeveen, R. C., deFilippi, C., Cushman, M. & Folsom, A. R. (2017). Galectin-3 and Venous Thromboembolism Incidence: the Atherosclerosis Risk in Communities (ARIC) Study. Research and Practice in Thrombosis and Haemostasis, 1(2), 223–230. https://doi. org/10.1002/rth2.12038.
Fattah, M. A., Shaheen, M. H. & Mahfouz, M. H. (2003). Disturbances of haemostasis in diabetes mellitus. Disease Markers, 19(6), 251–258. https://doi. org/10.1155/2004/797458.
Gertz, J. M. & Bouchard, B. A. (2015). Mechanisms Regulating Acquisition of Platelet-Derived Factor V/Va by Megakaryocytes. Journal of Cellular Biochemistry, 116(10), 2121–2126. https://doi.org/10.1002/jcb.25163.
Giovannone, N., Smith, L. K., Treanor, B. & Dimitroff, C. J. (2018). Galectin-Glycan Interactions as Regulators of B Cell Immunity. Frontiers in Immunology, 9, 2839. https:// doi.org/10.3389/fimmu.2018.02839.
Hoffman, M. & Monroe, D. M., 3rd (2001). A cell-based model of hemostasis. Thrombosis and Haemostasis, 85(6), 958–965.
Johannes, L., Jacob, R. & Leffler, H. (2018). Galectins at a glance. Journal of Cell Science, 131(9), jcs208884. https:// doi.org/10.1242/jcs.208884.
Kasai, K. & Hirabayashi, J. (1996). Galectins: a family of animal lectins that decipher glycocodes. Journal of Biochemistry, 119(1), 1–8. https://doi.org/10.1093/oxfordjournals. jbchem.a021192.
Krüger-Genge, A., Blocki, A., Franke, R. P. & Jung, F. (2019). Vascular Endothelial Cell Biology: An Update. International Journal of Molecular Sciences, 20(18), 4411. https://doi. org/10.3390/ijms20184411.
Majluf-Cruz, A. (2017). Trombofilia [Thrombophilia]. Gaceta Médica de México, 153(4), 427–429. https://doi. org/10.24875/GMM.M17000013.
Majluf-Cruz, A., & Espinosa-Larrañaga, F. (2007). Fisiopatología de la trombosis. Gaceta Médica de México, 143 (S1), pp.11-14.
Nagaoka, M. R., Strital, E., Kouyoumdjian, M. & Borges, D. R. (2002). Participation of a galectin-dependent mechanism in the hepatic clearance of tissue-type plasminogen activator and plasma kallikrein. Thrombosis Research, 108(4), 257–262. https://doi.org/10.1016/s0049-3848(02)00393-6.
O’Sullivan, J. M., Jenkins, P. V., Rawley, O., Gegenbauer, K., Chion, A., Lavin, M., Byrne, B., O’Kennedy, R., Preston, R. J., Brophy, T. M. & O’Donnell, J. S. (2016). Galectin-1 and Galectin-3 Constitute Novel-Binding Partners for Factor VIII. Arteriosclerosis,Thrombosis, and Vascular Biology, 36(5), 855–863. https://doi.org/10.1161/ ATVBAHA.115.306915.
Ou, H. C., Chou, W. C., Hung, C. H., Chu, P. M., Hsieh, P. L., Chan, S. H. & Tsai, K. L. (2019). Galectin-3 aggravates ox-LDL-induced endothelial dysfunction through LOX-1 mediated signaling pathway. Environmental Toxicology, 34(7), 825–835. https://doi.org/10.1002/tox.22750.
Oyenuga, A., Folsom, A. R., Fashanu, O., Aguilar, D. & Ballantyne, C. M. (2019). Plasma Galectin-3 and Sonographic Measures of Carotid Atherosclerosis in the Atherosclerosis Risk in Communities Study. Angiology, 70(1), 47–55. https://doi.org/10.1177/0003319718780772.
Pacienza, N., Pozner, R. G., Bianco, G. A., D’Atri, L. P., Croci, D. O., Negrotto, S., Malaver, E., Gómez, R. M., Rabinovich, G. A. & Schattner, M. (2008). The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 22(4), 1113–1123. https://doi.org/10.1096/ fj.07-9524com.
Peterson, S. B. & Hart, G. W. (2016). New insights: A role for O-GlcNAcylation in diabetic complications. Critical Reviews in Biochemistry and Molecular Biology, 51(3), 150–161. https://doi.org/10.3109/10409238.2015.1135102.
Rabinovich, G. A. (1999). Galectins: an evolutionarily conserved family of animal lectins with multifunctional properties; a trip from the gene to clinical therapy. Cell Death and Differentiation, 6(8), 711–721. https://doi.org/10.1038/ sj.cdd.4400535.
Roda, O., Ortiz-Zapater, E., Martínez-Bosch, N., Gutiérrez- Gallego, R., Vila-Perelló, M., Ampurdanés, C., Gabius, H. J., André, S., Andreu, D., Real, F. X. & Navarro, P. (2009). Galectin-1 is a novel functional receptor for tissue plasminogen activator in pancreatic cancer. Gastroenterology, 136(4), 1379–e5. https://doi. org/10.1053/j.gastro.2008.12.039.
Romaniuk, M. A., Croci, D. O., Lapponi, M. J., Tribulatti, M. V., Negrotto, S., Poirier, F., Campetella, O., Rabinovich, G. A. & Schattner, M. (2012). Binding of galectin-1 to αIIbβ₃ integrin triggers «outside-in» signals, stimulates platelet activation, and controls primary hemostasis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 26(7), 2788–2798. https://doi.org/10.1096/fj.11-197541.
Romaniuk, M. A., Tribulatti, M. V., Cattaneo, V., Lapponi, M. J., Molinas, F. C., Campetella, O. & Schattner, M. (2010). Human platelets express and are activated by galectin-8. The Biochemical Journal, 432(3), 535–547.https://doi. org/10.1042/BJ20100538.
Ruvolo, P. P. (2019). Galectins as regulators of cell survival in the leukemia niche. Advances in Biological Regulation, 71, 41–54. https://doi.org/10.1016/j.jbior.2018.09.003.
Saint-Lu, N., Oortwijn, B. D., Pegon, J. N., Odouard, S., Christophe, O. D., de Groot, P. G., Denis, C. V. & Lenting, P. J. (2012). Identification of galectin-1 and galectin-3 as novel partners for von Willebrand factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(4), 894–901. https:// doi.org/10.1161/ATVBAHA.111.240309.
Storti, P., Marchica, V. & Giuliani, N. (2017). Role of Galectins in Multiple Myeloma. International Journal of Molecular Sciences, 18(12), 2740. https://doi.org/10.3390/ ijms18122740.
Tan, K., Cheung, C. L., Lee, A., Lam, J., Wong, Y. & Shiu, S. (2019). Galectin-3 and risk of cardiovascular events and all-cause mortality in type 2 diabetes. Diabetes/ Metabolism Research and Reviews, 35(2), e3093. https:// doi.org/10.1002/dmrr.3093.
Van den Steen, P.E., Rudd, P. M., Dwek, R. A. & Opdenakker, G. (1998). Concepts and principles of O-linked glycosylation. Critical Reviews in Biochemistry and Molecular Biology, 33(3), 151–208. https://doi. org/10.1080/10409239891204198.
Vasta, G. R., Feng, C., Bianchet, M. A., Bachvaroff, T. R. & Tasumi, S. (2015). Structural, functional, and evolutionary aspects of galectins in aquatic mollusks: From a sweet tooth to the Trojan horse. Fish & Shellfish Immunology, 46(1), 94–106. https://doi.org/10.1016/j.fsi.2015.05.012.
Wendelboe, A. M. & Raskob, G. E. (2016). Global Burden of Thrombosis: Epidemiologic Aspects. Circulation Research, 118(9), 1340–1347. https://doi.org/10.1161/ CIRCRESAHA.115.306841.
Zappelli, C., van der Zwaan, C., Thijssen-Timmer, D. C., Mertens, K. & Meijer, A. B. (2012). Novel role for galectin-8 protein as mediator of coagulation factor V endocytosis by megakaryocytes. The Journal of Biological Chemistry, 287(11), 8327–8335. https://doi.org/10.1074/ jbc.M111.305151.