2019, Number 2
Next >>
Biotecnol Apl 2019; 36 (2)
Identification and in vitro antifungal evaluation of Streptomyces sp. of desert soil against Colletotrichum sp.
Leiva PJL, Gonzales CJ, Ruiz PÁA, Solano CMÁ
Language: English
References: 23
Page: 2201-2206
PDF size: 480.96 Kb.
ABSTRACT
Streptomyces sp. has the potential to inhibit the incidence of fungal phytopathogens in crops due to their biochemical activity and the production of secondary metabolites. This work was aimed to identify and evaluate in vitro the antifungal potential of five strains of Streptomyces sp., isolated from desert soil, against Colletotrichum sp. The isolated strains were morphologically characterized by macroscopic and microscopic analysis, and their inhibition percentage against Colletotrichum sp. were determined by the dual challenge and well diffusion tests, applying a completely randomized design with three replicates. The inhibitory capacities of the five strains versus the phytopathogenic fungus varied considerably. Strains Q-84 and Q-60 showed the highest percentages of inhibition in the dual challenge test, with 92 and 88 %, respectively. In the well diffusion test, the crude bioactive extract of strain Q-84 showed the highest inhibition (56 %) statistically similar to that of commercial chemical fungicides AmistarTop® and Opera® (84 and 100 %, respectively). All the strains displayed lipase activity and three of them (Q-84 included) also showed protease activity. The genetic characterization by 16S rDNA sequencing evidenced the homology of the strain Q-84 DNA to that of S. maritimus, further coincident with the lipase activity profile. Overall, the Q-84 showed potential to be used as biocontrol against Colletotrichum sp.
REFERENCES
Evangelista Z. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World J Microbiol Biotechnol. 2014;30(5):1639-47.
Arasu M, Esmail G, Al-Dhabi N, Ponmurugan K. Managing pests and diseases of grain legumes with secondary metabolites from Actinomycetes. Subramaniam G, Arumugam S, Rajendran V (eds.). Plant growth promoting Actinobacteria. A new avenue for enhancing the productivity and soil fertility of grain legumes. Singapore: Springer Science Business Media Singapore. 2016; p. 83-98.
Guo X, Liu N, Li X, Ding Y, Shang F, Gao Y, et al. Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl Environ Microbiol. 2015;81(9):3086-103.
Bull AT, Asenjo JA, Goodfellow M, Gomez-Silva B. The Atacama Desert: Technical resources and the growing importance of novel microbial diversity. Annu Rev Microbiol. 2016;70:215-34.
Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414-30.
Chen F, Han P, Liu P, Si N, Liu J, Liu X. Activity of the novel fungicide SYPZ048 against plant pathogens. Sci Rep. 2014;4:6473.
Gao Y, He L, Li X, Lin J, Mu W, Liu F. Toxicity and biochemical action of the antibiotic fungicide tetramycin on Colletotrichum scovillei. Pestic Biochem Physiol. 2018;147:51-8.
Balaraju K, Kim CJ, Park DJ, Nam KW, Zhang K, Sang MK, et al. Paromomycin derived from Streptomyces sp. AG-P 1441 induces resistance against two major pathogens of Chili pepper. J Microbiol Biotechnol. 2016;26(9):1542-50.
Agrios G. Plant pathology. 5th ed. New York: Elsevier Academic Press; 2005.
Smith BJ, Black LL. Morphological, cultural and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Dis. 1990;74:69-76.
Bergey J, Hendricks D. Bergey’s Manual of Determinative Bacteriology. Baltimore: William & Wilkins; 1984.
Honore-Bouakline S, Vincensini JP, Giacuzzo V, Lagrange PH, Herrmann JL. Rapid diagnosis of extrapulmonary tuberculosis by PCR: impact of sample preparation and DNA extraction. J Clin Microbiol. 2003;41(6):2323-9.
Castro R, Álvarez A, Machado E, Mendoza M, Gómez R. Caracterización de una quitinasa extracelular producida por Serratia sp. biomi - 363706 usando quitina coloidal como sustrato. Revista Sociedad Química del Perú. 2011;77(2):101-8.
Franco M. Evaluación de caracteres PGPR en actinomicetos e interacciones de estas rizobacterias con hongos formadores de micorrizas. Granada: Universidad de Granada; 2008 [cited 2018 Oct 17]. Available from: https://hera.ugr.es/tesisugr/ 17716093.pdf
Kaur T, Manhas RK. Antifungal, insecticidal, and plant growth promoting potential of Streptomyces hydrogenans DH16. J Basic Microbiol. 2014;54(11):1175-85.
Dávila M, Gallegos M, Hernández C, Ochoa F, Flores O. Antagonistic actinomycetes against phytopathogenic fungi of agricultural importance. Rev Mex Cienc Agrarias. 2015;4(8):1132.
Molano A, Algecira N, Bernal J, Franco-Correa M. Evaluación y Selección de un Medio de Cultivo a partir de Actinomycetes. In: Memorias del II Congreso Internacional de Microbiología Industrial, Pontificia Universidad Javeriana, Mayo 2000. Bogotá: Pontificia Universidad Javeriana; 2000.
Demain A, Piret J. Why secondary metabolism Genetics of industrial microorganisms. J Food Safety. 1983;5:361-2.
Kim HJ, Lee EJ, Park SH, Lee HS, Chung N. Biological control of anthracnose (Colletotrichum gloeosporioides) in pepper and cherry tomato by Streptomyces sp. A1022. J Agric Sci, 2014;6(2):54-62.
Palaniyandi SA, Yang SH, Cheng JH, Meng L, Suh JW. Biological control of anthracnose (Colletotrichum gloeosporioides) in yam by Streptomyces sp. MJM5763. J Appl Microbiol. 2011;111(2):443-55.
Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S, Kinkel L. Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb Ecol. 2009;57(3):413-20.
Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, et al. Taxonomic outline of the phylum Actinobacteria. In: Whitman WB, Editor. Bergey’s Manual of Systematic Bacteriology. 2nd edition. New York: Springer; 2012.
Sinha K, Hegde R, Kush A. Exploration on native actinomycetes strains and their potential against fungal plant pathogens. Int J Curr Microbiol App Sci. 2014; 3(11):37-45.