2021, Number 1
Animal models in the study of metabolic syndrome
Language: Spanish
References: 75
Page:
PDF size: 217.37 Kb.
ABSTRACT
The term metabolic syndrome refers to a series of risk factors that lead to a metabolic imbalance. There are various causes in the development of metabolic syndrome, among the most prevalent are excessive calorie intake and low physical activity. The resulting imbalance between energy intake and expenditure leads to weigh gain in the form of adipose tissue, which is tightly linked to multiple metabolic anomalies. Metabolic syndrome and its consequences are a public health concern worldwide. Although epidemiologic studies provide ample information regarding the pathogenesis of metabolic syndrome, ethical and methodological concerns make research on animal models necessary. The choice of a particular model requires the careful analysis of the variables or phenomenon to be studied, as multiple animal models of metabolic syndrome are currently available. This review covers general elements of metabolic syndrome. In addition, we discuss basic aspects of the most common murine models, taking into account models induced by high-sugar diets, high-fat diets and genetic models. Particularly for high-fat diet models, other aspects are considered, such as the percentage of kcal from fat, the type of fatty acids included in the diet, as well as multigenerational effects.REFERENCES
Alberti, K. G. & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine: A Journal of the British Diabetic Association, 15(7), 539–553. DOI: 10.1002/(SICI)1096- 9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
Buettner, R., Parhofer, K. G., Woenckhaus, M., Wrede, C. E., Kunz-Schughart, L. A., Schölmerich, J. & Bollheimer, L. C. (2006). Defining high-fat-diet rat models: Metabolic and molecular effects of different fat types. Journal of Molecular Endocrinology, 36(3), 485–501. DOI: 10.1677/ jme.1.01909 12. Cao, W., Liu, H.-Y., Hong, T. & Liu, Z. (2010). Excess exposure to insulin may be the primary cause of insulin resistance. American Journal of Physiology. Endocrinology and Metabolism, 298(2), E372. DOI: 10.1152/ajpendo.00677.2009
Dong, Y. F., Liu, L., Kataoka, K., Nakamura, T., Fukuda, M., Tokutomi, Y., Nako, H., Ogawa, H. & Kim-Mitsuyama, S. (2010). Aliskiren prevents cardiovascular complications and pancreatic injury in a mouse model of obesity and type 2 diabetes. Diabetologia, 53(1), 180–191. DOI: 10.1007/ s00125-009-1575-5
Enzi, G., Busetto, L., Inelmen, E. M., Coin, A. & Sergi, G. (2003). Historical perspective: Visceral obesity and related comorbidity in Joannes Baptista Morgagni’s “De sedibus et causis morborum per anatomen indagata”. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 27(4), 534–535. DOI: 10.1038/sj.ijo.0802268
García-Escobar, E., Monastero, R., García-Serrano, S., Gómez- Zumaquero, J. M., Lago-Sampedro, A., Rubio-Martín, E., Colomo, N., Rodríguez-Pacheco, F., Soriguer, F. & Rojo- Martínez, G. (2017). Dietary fatty acids modulate adipocyte TNFa production via regulation of its DNA promoter methylation levels. The Journal of Nutritional Biochemistry, 47, 106–112. DOI: 10.1016/j.jnutbio.2017.05.006
Gonzalez, E., Flier, E., Molle, D., Accili, D. & McGraw, T. E. (2011). Hyperinsulinemia leads to uncoupled insulin regulation of the GLUT4 glucose transporter and the FoxO1 transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10162–10167. DOI: 10.1073/pnas.1019268108
Hu, S., Wang, L., Yang, D., Li, L., Togo, J., Wu, Y., Liu, Q., Li, B., Li, M., Wang, G., Zhang, X., Niu, C., Li, J., Xu, Y., Couper, E., Whittington-Davies, A., Mazadi, M., Luo, L., Whang, S., Douglas, A. & Speakman, JR. (2018). Dietary Fat, but Not Protein or Carbohydrate, Regulates Energy Intake and Causes Adiposity in Mice. Cell metabolism, 28(3), 415-431.e4. DOI: 10.1016/j.cmet.2018.06.010
Ishimoto, T., Lanaspa, M. A., Rivard, C. J., Roncal-Jimenez, C. A., Orlicky, D. J., Cicerchi, C., McMahan, R H., Abdelmalek, M. F., Rosen, H. R., Jackman, M. R., MacLean, P. S., Diggle, C. P., Asipu, A., Inaba S., Kosugi, T., Sato, W., Marumaya, S., Sánchez-Lozada, L. G., Sautin, Y. Y., Hill, J. O., Bonthron, D. T. & Johnson, R. J. (2013). High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology (Baltimore, Md.), 58(5), 1632–1643. DOI: 10.1002/hep.26594
Kirk, S. L., Samuelsson, A.-M., Argenton, M., Dhonye, H., Kalamatianos, T., Poston, L., Taylor, P. D. & Coen, C. W. (2009). Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PloS One, 4(6), e5870. DOI: 10.1371/journal. pone.0005870
Kleinert, M., Clemmensen, C., Hofmann, S. M., Moore, M. C., Renner, S., Woods, S. C., Huypens, P., Beckers, J., de Angelis, M. H., Schürmann, A., Bakhti, M., Klingenspor, M., Heiman, M., Cherrington, A. D., Ristow, M., Lickert, H., Wolf, E., Havel, P. J., Müller, T. D. & Tschöp, M. H. (2018). Animal models of obesity and diabetes mellitus. Nature Reviews. Endocrinology, 14(3), 140–162. DOI: 10.1038/nrendo.2017.161
Kurita, Y., Ohki, T., Soejima, E., Yuan, X., Kakino, S., Wada, N., Hashinaga, T., Nakayama, H., Tani, J., Tajiri, Y., Hiromatsu, Y., Yamada, K. & Nomura, M. (2019). A High- Fat/High-Sucrose Diet Induces WNT4 Expression in Mouse Pancreatic β-cells. The Kurume Medical Journal, 65(2), 55–62. DOI: 10.2739/kurumemedj.MS652008
Lima, M. L. R. P., Leite, L. H. R., Gioda, C. R., Leme, F. O. P., Couto, C. A., Coimbra, C. C., Leite, V. H. R. & Ferrari, T. C. A. (2016). A Novel Wistar Rat Model of Obesity-Related Nonalcoholic Fatty Liver Disease Induced by Sucrose-Rich Diet. Journal of Diabetes Research, 2016, 9127076. DOI: 10.1155/2016/9127076
Mach, F., Baigent, C., Catapano, A. L., Koskinas, K. C., Casula, M., Badimon, L., Chapman, M. J., De Backer, G. G., Delgado, V., Ference, B. A., Graham, I. M., Halliday, A., Landmesser, U., Mihaylova, B., Pedersen, T. R., Riccardi, G., Richter, D. J., Sabatine, M. S., Taskinen, M.- R., Tokgozoglu, L. & Wiklund, O. (2020). ESC Scientific Document Group (2020). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. European Heart Journal, 41(1), 111-118. DOI: 10.1093/eurheartj/ehz455
Maekawa, F., Fujiwara, K., Kohno, D., Kuramochi, M., Kurita, H. & Yada, T. (2006). Young adult-specific hyperphagia in diabetic Goto-kakizaki rats is associated with leptin resistance and elevation of neuropeptide Y mRNA in the arcuate nucleus. Journal of Neuroendocrinology, 18(10), 748–756. DOI: 10.1111/j.1365-2826.2006.01470.x
Minton, J. a. L., Owen, K. R., Ricketts, C. J., Crabtree, N., Shaikh, G., Ehtisham, S., Porter, J. R., Carey, C., Hodge, D., Paisey, R., Walker, M. & Barrett, T. G. (2006). Syndromic obesity and diabetes: Changes in body composition with age and mutation analysis of ALMS1 in 12 United Kingdom kindreds with Alstrom syndrome. The Journal of Clinical Endocrinology and Metabolism, 91(8), 3110–3116. DOI: 10.1210/jc.2005-2633
O’Neill, S., Bohl, M., Gregersen, S., Hermansen, K. & O’Driscoll, L. (2016). Blood-Based Biomarkers for Metabolic Syndrome. Trends in Endocrinology & Metabolism, 27(6), 363–374. DOI: 10.1016/J.TEM.2016.03.012 . Pucci, G., Alcidi, R., Tap, L., Battista, F., Mattace-Raso, F. & Schillaci, G. (2017). Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacological Research, 120, 34–42. DOI: 10.1016/j.phrs.2017.03.008
Schaefer, E. J., Tsunoda, F., Diffenderfer, M., Polisecki, E., Thai, N. & Asztalos, B. (2000). The Measurement of Lipids, Lipoproteins, Apolipoproteins, Fatty Acids, and Sterols, and Next Generation Sequencing for the Diagnosis and Treatment of Lipid Disorders. En K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, W. W. de Herder, K. Dhatariya, K. Dungan, A. Grossman, J. M. Hershman, J. Hofland, S. Kalra, G. Kaltsas, C. Koch, P. Kopp, M. Korbonits, C. S. Kovacs, W. Kuohung, B. Laferrére, E. A. McGee, R. McLachlan, J. E. Morley, M. New, J. Purnell, R. Sahay, F. Singer, C. A. Stratakis, D. L. Trence, D. P. Wilson (Eds.), Endotext. South Dartmouth (MA): MDText.com, Inc. http://www.ncbi.nlm.nih.gov/books/NBK355892/
Souza Cruz, E. M., Bitencourt de Morais, J. M., Dalto da Rosa, C. V., da Silva Simões, M., Comar, J. F., de Almeida Chuffa, L. G. & Seiva, F. R. F. (2020). Long-term sucrose solution consumption causes metabolic alterations and affects hepatic oxidative stress in Wistar rats. Biology Open, 9(3). DOI: 10.1242/bio.047282
Stemmer, K., Perez-Tilve, D., Ananthakrishnan, G., Bort, A., Seeley, R. J., Tschöp, M. H., Dietrich, D. R. & Pfluger, P. T. (2012). High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney. Disease models & mechanisms, 5(5), 627–635. DOI: 10.1242/dmm.009407
Yang, X.-X., Wang, X., Shi, T.-T., Dong, J.-C., Li, F.-J., Zeng, L.- X., Yang, M., Gu, W., Li, J.-P. & Yu, J. (2019). Mitochondrial dysfunction in high-fat diet-induced nonalcoholic fatty liver disease: The alleviating effect and its mechanism of Polygonatum kingianum. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 117, 109083. DOI: 10.1016/j.biopha.2019.109083
Zhou, Y., Li, W., Zhou, J., Chen, J., Wang, X., Cai, M., Li, F., Xu, W., Carlsson, P.-O. & Sun, Z. (2019). Lipotoxicity reduces β cell survival through islet stellate cell activation regulated by lipid metabolism-related molecules. Experimental Cell Research, 380(1), 1–8. DOI: 10.1016/j.yexcr.2019.04.012