2021, Número 1
Viaje al centro de la mitocondria: importación de proteínas, sus alteraciones y enfermedades relacionadas
Idioma: Español
Referencias bibliográficas: 207
Paginas:
Archivo PDF: 1323.12 Kb.
RESUMEN
Las mitocondrias son organelos fascinantes, no solo porque son el sitio en donde se genera la energía de las células, sino por su relevancia en procesos y patologías de interés médico. La gran mayoría de las proteínas que constituyen el proteoma mitocondrial están codificadas en el núcleo y se traducen por ribosomas citosólicos, por lo que deben ser identificadas correctamente para ser distribuidas e insertadas en cada uno de los subcompartimentos mitocondriales. En este artículo realizamos una descripción de las las maquinarias de importación mitocondrial, además de las diferentes respuestas celulares que contrarrestan las alteraciones en los procesos de transporte de las proteínas o cuando existe una disfunción mitocondrial. Finalmente, mencionamos las enfermedades causadas por mutaciones en los complejos transportadores y de distribución de las proteínas de este organelo, que se han identificado hasta la fecha.REFERENCIAS (EN ESTE ARTÍCULO)
Al Teneiji, A., Siriwardena, K., George, K., Mital, S. & Mercimek-Mahmutoglu, S. (2016). Progressive Cerebellar Atrophy and a Novel Homozygous Pathogenic DNAJC19 Variant as a Cause of Dilated Cardiomyopathy Ataxia Syndrome. Pediatric neurology, 62, 58–61. https://doi. org/10.1016/j.pediatrneurol.2016.03.020
Araiso, Y., Tsutsumi, A., Qiu, J., Imai, K., Shiota, T., Song, J., Lindau, C., Wenz, L. S., Sakaue, H., Yunoki, K., Kawano, S., Suzuki, J., Wischnewski, M., Schutze, C., Ariyama, H., Ando, T., Becker, T., Lithgow, T., Wiedemann, N., Pfanner, N., Kikkawa, M & Endo, T. (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature, 575(7782), 395–401. https://doi.org/10.1038/ s41586-019-1680-7
Bacman, S. R., Kauppila, J., Pereira, C. V., Nissanka, N., Miranda, M., Pinto, M., Williams, S. L., Larsson, N. G., Stewart, J. B, & Moraes, C. T. (2018). MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nature medicine, 24(11), 1696–1700. https://doi.org/10.1038/ s41591-018-0166-8
Baker, M. J., Webb, C. T., Stroud, D. A., Palmer, C. S., Frazier, A. E., Guiard, B., Chacinska, A., Gulbis, J. M. & Ryan, M. T. (2009). Structural and functional requirements for activity of the Tim9-Tim10 complex in mitochondrial protein import. Molecular biology of the cell, 20(3), 769–779. https://doi. org/10.1091/mbc.e08-09-0903
Basch, M., Wagner, M., Rolland, S., Carbonell, A., Zeng, R., Khosravi, S., Schmidt, A., Aftab, W., Imhof, A., Wagener, J., Conradt, B., & Wagener, N. (2020). Msp1 cooperates with the proteasome for extraction of arrested mitochondrial import intermediates. Molecular Biology of the Cell, 31(8), 753–767. https://doi.org/10.1091/mbc.E19-06-0329
Bauerschmitt, H., Mick, D. U., Deckers, M., Vollmer, C., Funes, S., Kehrein, K., Ott, M., Rehling, P. & Herrmann, J. M. (2010). Ribosome-binding Proteins Mdm38 and Mba1 Display Overlapping Functions for Regulation of Mitochondrial Translation. Molecular biology of the cell, 21(12), 1937– 1944. https://doi.org/10.1091/mbc.e10-02-0101
Becker, T., Pfannschmidt, S., Guiard, B., Stojanovski, D., Milenkovic, D., Kutik, S., Pfanner, N., Meisinger, C. & Wiedemann, N. (2008). Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors. The Journal of biological chemistry, 283(1), 120–127. https://doi.org/10.1074/jbc. M706997200
Becker, T., Wenz, L. S., Kruger, V., Lehmann, W., Muller, J. M., Goroncy, L., Zufall, N., Lithgow, T., Guiard, B., Chacinska, A., Wagner, R., Meisinger, C. & Pfanner, N. (2011). The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. The Journal of cell biology, 194(3), 387–395. https://doi.org/10.1083/ jcb.201102044
Berthold, J., Bauer, M. F., Schneider, H. C., Klaus, C., Dietmeier, K., Neupert, W. & Brunner, M. (1995). The MIM complex mediates preprotein translocation across the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system. Cell, 81(7), 1085–1093. https://doi.org/10.1016/ s0092-8674(05)80013-3
Björkholm, P., Harish, A., Hagström, E., Ernst, A. M. & Andersson, S. G. (2015). Mitochondrial genomes are retained by selective constraints on protein targeting. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10154–10161. https:// doi.org/10.1073/pnas.1421372112
Boos, F., Kramer, L., Groh, C., Jung, F., Haberkant, P., Stein, F., Wollweber, F., Gackstatter, A., Zoller, E., van der Laan, M., Savitski, M. M., Benes, V. & Herrmann, J. M. (2019). Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nature cell biology, 21(4), 442–451. https://doi.org/10.1038/s41556- 019-0294-5
Brix, J., Rudiger, S., Bukau, B., Schneider-Mergener, J. & Pfanner, N. (1999). Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. The Journal of biological chemistry, 274(23), 16522–16530. https://doi.org/10.1074/jbc.274.23.16522
Brix, J., Ziegler, G. A., Dietmeier, K., Schneider-Mergener, J., Schulz, G. E. & Pfanner, N. (2000). The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. Journal of molecular biology, 303(4), 479–488. https:// doi.org/10.1006/jmbi.2000.4120
Burri, L., Strahm, Y., Hawkins, C. J., Gentle, I. E., Puryer, M. A., Verhagen, A., Callus, B., Vaux, D. & Lithgow, T. (2005). Mature DIABLO/Smac is produced by the IMP protease complex on the mitochondrial inner membrane. Molecular biology of the cell, 16(6), 2926–2933. https:// doi.org/10.1091/mbc.e04-12-1086
Calvo, S. E., Compton, A. G., Hershman, S. G., Lim, S. C., Lieber, D. S., Tucker, E. J., Laskowski, A., Garone, C., Liu, S., Jaffe, D. B., Christodoulou, J., Fletcher, J. M., Bruno, D. L., Goldblatt, J., Dimauro, S., Thorburn, D. R. & Mootha, V. K. (2012). Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Science translational medicine, 4(118), 118ra10. https://doi. org/10.1126/scitranslmed.3003310
Chacinska, A., Lind, M., Frazier, A. E., Dudek, J., Meisinger, C., Geissler, A., Sickmann, A., Meyer, H. E., Truscott, K. N., Guiard, B., Pfanner, N. & Rehling, P. (2005). Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell, 120(6), 817–829. https://doi.org/10.1016/j.cell.2005.01.011
Chquet, K., Zurita-Rendon, O., La Piana, R., Yang, S., Dicaire, M. J., Care4Rare, C., Boycott, K. M., Majewski, J., Shoubridge, E. A., Brais, B. & Tetreault, M. (2016). Autosomal recessive cerebellar ataxia caused by a homozygous mutation in PMPCA. Brain: a journal of neurology, 139(Pt 3), e19. https://doi.org/10.1093/brain/awv362
D’Silva, P. D., Schilke, B., Walter, W., Andrew, A. & Craig, E. A. (2003). J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13839–13844. https://doi.org/10.1073/pnas.1936150100
Davey, K. M., Parboosingh, J. S., McLeod, D. R., Chan, A., Casey, R., Ferreira, P., Snyder, F. F., Bridge, P. J. & Bernier, F. P. (2006). Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. Journal of medical genetics, 43(5), 385–393. https://doi.org/10.1136/jmg.2005.036657
Di Fonzo, A., Ronchi, D., Lodi, T., Fassone, E., Tigano, M., Lamperti, C., Corti, S., Bordoni, A., Fortunato, F., Nizzardo, M., Napoli, L., Donadoni, C., Salani, S., Saladino, F., Moggio, M., Bresolin, N., Ferrero, I. & Comi, G. P. (2009). The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. American journal of human genetics, 84(5), 594–604. https://doi.org/10.1016/j. ajhg.2009.04.004
Di Maio, R., Barrett, P. J., Hoffman, E. K., Barrett, C. W., Zharikov, A., Borah, A., Hu, X., McCoy, J., Chu, C. T., Burton, E. A., Hastings, T. G. & Greenamyre, J. T. (2016). alpha-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Science translational medicine, 8(342), 342ra78. https://doi.org/10.1126/ scitranslmed.aaf3634
Doan, K. N., Grevel, A., Martensson, C. U., Ellenrieder, L., Thornton, N., Wenz, L. S., Opalinski, L., Guiard, B., Pfanner, N. & Becker, T. (2020). The Mitochondrial Import Complex MIM Functions as Main Translocase for alpha-Helical Outer Membrane Proteins. Cell reports, 31(4), 107567. https:// doi.org/10.1016/j.celrep.2020.107567
Franco-Iborra, S., Cuadros, T., Parent, A., Romero-Gimenez, J., Vila, M. & Perier, C. (2018). Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson’s disease. Cell death & disease, 9(11), 1122. https://doi.org/10.1038/ s41419-018-1154-0
Frazier, A. E., Dudek, J., Guiard, B., Voos, W., Li, Y., Lind, M., Meisinger, C., Geissler, A., Sickmann, A., Meyer, H. E., Bilanchone, V., Cumsky, M. G., Truscott, K. N., Pfanner, N. & Rehling, P. (2004). Pam16 has an essential role in the mitochondrial protein import motor. Nature structural & molecular biology, 11(3), 226–233. https://doi.org/10.1038/ nsmb735
Funes, S., Kauff, F., van der Sluis, E. O., Ott, M. & Herrmann, J. M. (2011). Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biological chemistry, 392(1-2), 13–19. https://doi. org/10.1515/BC.2011.013
Gammage, P. A., Viscomi, C., Simard, M. L., Costa, A., Gaude, E., Powell, C. A., Van Haute, L., McCann, B. J., Rebelo- Guiomar, P., Cerutti, R., Zhang, L., Rebar, E. J., Zeviani, M., Frezza, C., Stewart, J. B., & Minczuk, M. (2018). Genome editing in mitochondria corrects a pathogenic tDNA mutation in vivo. Nature medicine, 24(11), 1691–1695. https://doi.org/10.1038/s41591-018-0165-9
Gebert, N., Gebert, M., Oeljeklaus, S., von der Malsburg, K., Stroud, D. A., Kulawiak, B., Wirth, C., Zahedi, R. P., Dolezal, P., Wiese, S., Simon, O., Schulze-Specking, A., Truscott, K. N., Sickmann, A., Rehling, P., Guiard, B., Hunte, C., Warscheid, B., van der Laan, M., Pfanner, N. & Wiedemann, N. (2011). Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. Molecular cell, 44(5), 811–818. https://doi. org/10.1016/j.molcel.2011.09.025
Geissler, A., Chacinska, A., Truscott, K. N., Wiedemann, N., Brandner, K., Sickmann, A., Meyer, H. E., Meisinger, C., Pfanner, N. & Rehling, P. (2002). The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell, 111(4), 507–518. https://doi.org/10.1016/s0092-8674(02)01073-5
Ghiselli, F., Gomes-Dos-Santos, A., Adema, C. M., Lopes- Lima, M., Sharbrough, J. & Boore, J. L. (2021). Molluscan mitochondrial genomes break the rules. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 376(1825), 20200159. https://doi. org/10.1098/rstb.2020.0159
Gomkale, R., Cruz-Zaragoza, L. D., Suppanz, I., Guiard, B., Montoya, J., Callegari, S., Pacheu-Grau, D., Warscheid, B. & Rehling, P. (2020). Defining the Substrate Spectrum of the TIM22 Complex Identifies Pyruvate Carrier Subunits as Unconventional Cargos. Current biology: CB, 30(6), 1119–1127.e5. https://doi.org/10.1016/j.cub.2020.01.024
Hansen, K. G., Aviram, N., Laborenz, J., Bibi, C., Meyer, M., Spang, A., Schuldiner, M. & Herrmann, J. M. (2018). An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science (New York, N.Y.), 361(6407), 1118–1122. https://doi.org/10.1126/ science.aar8174
Hohr, A. I. C., Lindau, C., Wirth, C., Qiu, J., Stroud, D. A., Kutik, S., Guiard, B., Hunte, C., Becker, T., Pfanner, N. & Wiedemann, N. (2018). Membrane protein insertion through a mitochondrial beta-barrel gate. Science (New York, N.Y.), 359(6373), eaah6834. https://doi.org/10.1126/ science.aah6834
Ieva, R., Schrempp, S. G., Opalinski, L., Wollweber, F., Hoss, P., Heisswolf, A. K., Gebert, M., Zhang, Y., Guiard, B., Rospert, S., Becker, T., Chacinska, A., Pfanner, N. & van der Laan, M. (2014). Mgr2 functions as lateral gatekeeper for preprotein sorting in the mitochondrial inner membrane. Molecular cell, 56(5), 641–652. https://doi.org/10.1016/j. molcel.2014.10.010
Jin, H., May, M., Tranebjaerg, L., Kendall, E., Fontan, G., Jackson, J., Subramony, S. H., Arena, F., Lubs, H., Smith, S., Stevenson, R., Schwartz, C. & Vetrie, D. (1996). A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nature genetics, 14(2), 177–180. https://doi. org/10.1038/ng1096-177
Jobling, R. K., Assoum, M., Gakh, O., Blaser, S., Raiman, J. A., Mignot, C., Roze, E., Durr, A., Brice, A., Levy, N., Prasad, C., Paton, T., Paterson, A. D., Roslin, N. M., Marshall, C. R., Desvignes, J. P., Roeckel-Trevisiol, N., Scherer, S. W., Rouleau, G. A., Megarbane, A., Isaya, G., Delague, V. & Yoon, G. (2015). PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain: a journal of neurology, 138(Pt 6), 1505–1517. https://doi.org/10.1093/ brain/awv057
Joshi, M., Anselm, I., Shi, J., Bale, T. A., Towne, M., Schmitz- Abe, K., Crowley, L., Giani, F. C., Kazerounian, S., Markianos, K., Lidov, H. G., Folkerth, R., Sankaran, V. G. & Agrawal, P. B. (2016). Mutations in the substrate binding glycine-rich loop of the mitochondrial processing peptidasealpha protein (PMPCA) cause a severe mitochondrial disease. Cold Spring Harbor molecular case studies, 2(3), a000786. https://doi.org/10.1101/mcs.a000786
Kang, Y., Stroud, D. A., Baker, M. J., De Souza, D. P., Frazier, A. E., Liem, M., Tull, D., Mathivanan, S., McConville, M. J., Thorburn, D. R., Ryan, M. T. & Stojanovski, D. (2017). Sengers Syndrome-Associated Mitochondrial Acylglycerol Kinase Is a Subunit of the Human TIM22 Protein Import Complex. Molecular cell, 67(3), 457–470.e5. https://doi. org/10.1016/j.molcel.2017.06.014
Koehler, C. M., Merchant, S., Oppliger, W., Schmid, K., Jarosch, E., Dolfini, L., Junne, T., Schatz, G. & Tokatlidis, K. (1998). Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. The EMBO journal, 17(22), 6477–6486. https://doi.org/10.1093/ emboj/17.22.6477
Koehler, C. M., Murphy, M. P., Bally, N. A., Leuenberger, D., Oppliger, W., Dolfini, L., Junne, T., Schatz, G, & Or, E. (2000). Tim18p, a new subunit of the TIM22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. Molecular and cellular biology, 20(4), 1187–1193. https://doi.org/10.1128/ MCB.20.4.1187-1193.2000
Kozjak, V., Wiedemann, N., Milenkovic, D., Lohaus, C., Meyer, H. E., Guiard, B., Meisinger, C. & Pfanner, N. (2003). An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. The Journal of biological chemistry, 278(49), 48520–48523. https://doi.org/10.1074/jbc.C300442200
Kronidou, N. G., Oppliger, W., Bolliger, L., Hannavy, K., Glick, B. S., Schatz, G. & Horst, M. (1994). Dynamic interaction between Isp45 and mitochondrial hsp70 in the protein import system of the yeast mitochondrial inner membrane. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12818–12822. https:// doi.org/10.1073/pnas.91.26.12818
Kruger, V., Becker, T., Becker, L., Montilla-Martinez, M., Ellenrieder, L., Vogtle, F. N., Meyer, H. E., Ryan, M. T., Wiedemann, N., Warscheid, B., Pfanner, N., Wagner, R. & Meisinger, C. (2017). Identification of new channels by systematic analysis of the mitochondrial outer membrane. The Journal of cell biology, 216(11), 3485–3495. https:// doi.org/10.1083/jcb.201706043
Kubrich, M., Rassow, J., Voos, W., Pfanner, N. & Honlinger, A. (1998). The import route of ADP/ATP carrier into mitochondria separates from the general import pathway of cleavable preproteins at the trans side of the outer membrane. The Journal of biological chemistry, 273(26), 16374–16381. https://doi.org/10.1074/jbc.273.26.16374
Mayr, J. A., Haack, T. B., Graf, E., Zimmermann, F. A., Wieland, T., Haberberger, B., Superti-Furga, A., Kirschner, J., Steinmann, B., Baumgartner, M. R., Moroni, I., Lamantea, E., Zeviani, M., Rodenburg, R. J., Smeitink, J., Strom, T. M., Meitinger, T., Sperl, W. & Prokisch, H. (2012). Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. American journal of human genetics, 90(2), 314–320. https://doi.org/10.1016/j.ajhg.2011.12.005
Mehawej, C., Delahodde, A., Legeai-Mallet, L., Delague, V., Kaci, N., Desvignes, J. P., Kibar, Z., Capo-Chichi, J. M., Chouery, E., Munnich, A., Cormier-Daire, V. & Mégarbané, A. (2014). The impairment of MAGMAS function in human is responsible for a severe skeletal dysplasia. PLoS genetics, 10(5), e1004311. https://doi.org/10.1371/journal. pgen.1004311
Meinecke, M., Wagner, R., Kovermann, P., Guiard, B., Mick, D. U., Hutu, D. P., Voos, W., Truscott, K. N., Chacinska, A., Pfanner, N. & Rehling, P. (2006). Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science (New York, N.Y.), 312(5779), 1523–1526. https:// doi.org/10.1126/science.1127628
Milenkovic, D., Kozjak, V., Wiedemann, N., Lohaus, C., Meyer, H. E., Guiard, B., Pfanner, N. & Meisinger, C. (2004). Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. The Journal of biological chemistry, 279(21), 22781–22785. https://doi.org/10.1074/jbc.C400120200
Milenkovic, D., Ramming, T., Müller, J. M., Wenz, L. S., Gebert, N., Schulze-Specking, A., Stojanovski, D., Rospert, S. & Chacinska, A. (2009). Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. Molecular biology of the cell, 20(10), 2530–2539. https://doi.org/10.1091/mbc.e08-11-1108
Mokranjac, D., Sichting, M., Popov-Celeketić, D., Mapa, K., Gevorkyan-Airapetov, L., Zohary, K., Hell, K., Azem, A. & Neupert, W. (2009). Role of Tim50 in the transfer of precursor proteins from the outer to the inner membrane of mitochondria. Molecular biology of the cell, 20(5), 1400–1407. https://doi.org/10.1091/mbc.e08-09-0934
Murphy, M. P., Leuenberger, D., Curran, S. P., Oppliger, W. & Koehler, C. M. (2001). The essential function of the small Tim proteins in the TIM22 import pathway does not depend on formation of the soluble 70-kilodalton complex. Molecular and cellular biology, 21(18), 6132–6138. https:// doi.org/10.1128/MCB.21.18.6132-6138.2001
Ojala, T., Polinati, P., Manninen, T., Hiippala, A., Rajantie, J., Karikoski, R., Suomalainen, A. & Tyni, T. (2012). New mutation of mitochondrial DNAJC19 causing dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies. Pediatric research, 72(4), 432–437. https://doi.org/10.1038/pr.2012.92
Ponce-Rojas, J. C., Avendaño-Monsalve, M. C., Yañez-Falcón, A. R., Jaimes-Miranda, F., Garay, E., Torres-Quiroz, F., DeLuna, A. & Funes, S. (2017). αβ’-NAC cooperates with Sam37 to mediate early stages of mitochondrial protein import. The FEBS journal, 284(5), 814–830. https://doi. org/10.1111/febs.14024
Poveda-Huertes, D., Matic, S., Marada, A., Habernig, L., Licheva, M., Myketin, L., Gilsbach, R., Tosal-Castano, S., Papinski, D., Mulica, P., Kretz, O., Kücükköse, C., Taskin, A. A., Hein, L., Kraft, C., Büttner, S., Meisinger, C. & Vögtle, F. N. (2020). An Early mtUPR: Redistribution of the Nuclear Transcription Factor Rox1 to Mitochondria Protects against Intramitochondrial Proteotoxic Aggregates. Molecular cell,77(1), 180–188.e9. https://doi.org/10.1016/j. molcel.2019.09.026
Preuss, M., Ott, M., Funes, S., Luirink, J., & Herrmann, J. M. (2005). Evolution of mitochondrial oxa proteins from bacterial YidC. Inherited and acquired functions of a conserved protein insertion machinery. The Journal of biological chemistry, 280(13), 13004–13011. https://doi. org/10.1074/jbc.M414093200
Qiu, J., Wenz, L. S., Zerbes, R. M., Oeljeklaus, S., Bohnert, M., Stroud, D. A., Wirth, C., Ellenrieder, L., Thornton, N., Kutik, S., Wiese, S., Schulze-Specking, A., Zufall, N., Chacinska, A., Guiard, B., Hunte, C., Warscheid, B., van der Laan, M., Pfanner, N., Wiedemann, N., & Becker, T. (2013). Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell, 154(3), 596–608. https://doi.org/10.1016/j. cell.2013.06.033
Rampelt, H., Sucec, I., Bersch, B., Horten, P., Perschil, I., Martinou, J. C., van der Laan, M., Wiedemann, N., Schanda, P. & Pfanner, N. (2020). The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC biology, 18(1), 2. https:// doi.org/10.1186/s12915-019-0733-6
Rassow, J., Maarse, A. C., Krainer, E., Kübrich, M., Müller, H., Meijer, M., Craig, E. A. & Pfanner, N. (1994). Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. The Journal of cell biology, 127(6 Pt 1), 1547–1556. https://doi.org/10.1083/jcb.127.6.1547
Russell, S., Bennett, J., Wellman, J. A., Chung, D. C., Yu, Z. F., Tillman, A., Wittes, J., Pappas, J., Elci, O., McCague, S., Cross, D., Marshall, K. A., Walshire, J., Kehoe, T. L., Reichert, H., Davis, M., Raffini, L., George, L. A., Hudson, F. P., Dingfield, L., Zhu, X., Haller, J.A., Sohn, E.H., Mahajan, V.B., Pfeifer, W., Weckmann, M., Johnson, C., Gewaily, D., Drack, A., Stone, E., Wachtel, K., Simonelli, F., Leroy, B.P., Wright, J.F., High, K.A. & Maguire, A.M (2017). Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet (London, England), 390(10097), 849–860. https://doi. org/10.1016/S0140-6736(17)31868-8
Sarzi, E., Seveno, M., Piro-Mégy, C., Elzière, L., Quilès, M., Péquignot, M., Müller, A., Hamel, C. P., Lenaers, G. & Delettre, C. (2018). OPA1 gene therapy prevents retinal ganglion cell loss in a Dominant Optic Atrophy mouse model. Scientific reports, 8(1), 2468. https://doi. org/10.1038/s41598-018-20838-8
Shahrour, M. A., Staretz-Chacham, O., Dayan, D., Stephen, J., Weech, A., Damseh, N., Pri Chen, H., Edvardson, S., Mazaheri, S., Saada, A., NISC Intramural Sequencing, Hershkovitz, E., Shaag, A., Huizing, M., Abu-Libdeh, B., Gahl, W. A., Azem, A., Anikster, Y., Vilboux, T., Elpeleg, O. & Malicdan, M. C. (2017). Mitochondrial epileptic encephalopathy, 3-methylglutaconic aciduria and variable complex V deficiency associated with TIMM50 mutations. Clinical genetics, 91(5), 690–696. https://doi.org/10.1111/ cge.12855
Shiota, T., Mabuchi, H., Tanaka-Yamano, S., Yamano, K., & Endo, T. (2011). In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15179–15183. https://doi.org/10.1073/pnas.1105921108
Shiota, T., Imai, K., Qiu, J., Hewitt, V. L., Tan, K., Shen, H. H., Sakiyama, N., Fukasawa, Y., Hayat, S., Kamiya, M., Elofsson, A., Tomii, K., Horton, P., Wiedemann, N., Pfanner, N., Lithgow, T. & Endo, T. (2015). Molecular architecture of the active mitochondrial protein gate. Science (New York, N.Y.),349(6255), 1544–1548. https://doi.org/10.1126/ science.aac6428
Short, M. K., Hallett, J. P., Tar, K., Dange, T., Schmidt, M., Moir, R., Willis, I. M. & Jubinsky, P. T. (2012). The yeast magmas ortholog pam16 has an essential function in fermentative growth that involves sphingolipid metabolism. PloS one, 7(7), e39428. https://doi.org/10.1371/journal. pone.0039428
Sideris, D. P., Petrakis, N., Katrakili, N., Mikropoulou, D., Gallo, A., Ciofi-Baffoni, S., Banci, L., Bertini, I. & Tokatlidis, K. (2009). A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding. The Journal of cell biology, 187(7), 1007–1022. https://doi.org/10.1083/jcb.200905134
Stiller, S. B., Höpker, J., Oeljeklaus, S., Schütze, C., Schrempp, S. G., Vent-Schmidt, J., Horvath, S. E., Frazier, A. E., Gebert, N., van der Laan, M., Bohnert, M., Warscheid, B., Pfanner, N. & Wiedemann, N. (2016). Mitochondrial OXA Translocase Plays a Major Role in Biogenesis of Inner- Membrane Proteins. Cell metabolism, 23(5), 901–908. https://doi.org/10.1016/j.cmet.2016.04.005
Stroud, D. A., Becker, T., Qiu, J., Stojanovski, D., Pfannschmidt, S., Wirth, C., Hunte, C., Guiard, B., Meisinger, C., Pfanner, N. & Wiedemann, N. (2011). Biogenesis of mitochondrial β-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Molecular biology of the cell, 22(16), 2823–2833. https:// doi.org/10.1091/mbc.E11-02-0148
Torres-Torronteras, J., Viscomi, C., Cabrera-Pérez, R., Cámara, Y., Di Meo, I., Barquinero, J., Auricchio, A., Pizzorno, G., Hirano, M., Zeviani, M. & Martí, R. (2014). Gene therapy using a liver-targeted AAV vector restores nucleoside and nucleotide homeostasis in a murine model of MNGIE. Molecular therapy: the journal of the American Society of Gene Therapy, 22(5), 901–907. https://doi.org/10.1038/ mt.2014.6
Torres-Torronteras, J., Cabrera-Pérez, R., Vila-Julià, F., Viscomi, C., Cámara, Y., Hirano, M., Zeviani, M. & Martí, R. (2018). Long-Term Sustained Effect of Liver-Targeted Adeno-Associated Virus Gene Therapy for Mitochondrial Neurogastrointestinal Encephalomyopathy. Human gene therapy, 29(6), 708–718. https://doi.org/10.1089/ hum.2017.133
Tort, F., Ugarteburu, O., Texidó, L., Gea-Sorlí, S., García- Villoria, J., Ferrer-Cortès, X., Arias, Á., Matalonga, L., Gort, L., Ferrer, I., Guitart-Mampel, M., Garrabou, G., Vaz, F. M., Pristoupilova, A., Rodríguez, M., Beltran, S., Cardellach, F., Wanders, R. J., Fillat, C., García-Silva, M. T. & Ribes, A. (2019). Mutations in TIMM50 cause severe mitochondrial dysfunction by targeting key aspects of mitochondrial physiology. Human mutation, 40(10), 1700–1712. https://doi.org/10.1002/humu.23779
Tranebjaerg, L., Schwartz, C., Eriksen, H., Andreasson, S., Ponjavic, V., Dahl, A., Stevenson, R. E., May, M., Arena, F. & Barker, D. (1995). A new X linked recessive deafness syndrome with blindness, dystonia, fractures, and mental deficiency is linked to Xq22. Journal of medical genetics, 32(4), 257–263. https://doi.org/10.1136/jmg.32.4.257
Tria, F., Brueckner, J., Skejo, J., Xavier, J. C., Kapust, N., Knopp, M., Wimmer, J., Nagies, F., Zimorski, V., Gould, S. B., Garg, S. G. & Martin, W. F. (2021). Gene duplications trace mitochondria to the onset of eukaryote complexity. Genome biology and evolution, evab055. Advance online publication. https://doi.org/10.1093/gbe/evab055
Truscott, K. N., Voos, W., Frazier, A. E., Lind, M., Li, Y., Geissler, A., Dudek, J., Müller, H., Sickmann, A., Meyer, H. E., Meisinger, C., Guiard, B., Rehling, P. & Pfanner, N. (2003). A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. The Journal of cell biology, 163(4), 707–713. https://doi.org/10.1083/jcb.200308004
Valente, E. M., Bentivoglio, A. R., Dixon, P. H., Ferraris, A., Ialongo, T., Frontali, M., Albanese, A. & Wood, N. W. (2001). Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. American journal of human genetics, 68(4), 895–900. https://doi.org/10.1086/319522
van der Laan, M., Chacinska, A., Lind, M., Perschil, I., Sickmann, A., Meyer, H. E., Guiard, B., Meisinger, C., Pfanner, N. & Rehling, P. (2005). Pam17 is required for architecture and translocation activity of the mitochondrial protein import motor. Molecular and cellular biology, 25(17), 7449–7458. https://doi.org/10.1128/MCB.25.17.7449-7458.2005
van der Laan, M., Meinecke, M., Dudek, J., Hutu, D. P., Lind, M., Perschil, I., Guiard, B., Wagner, R., Pfanner, N. & Rehling, P. (2007). Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nature cell biology, 9(10), 1152–1159. https://doi. org/10.1038/ncb1635
Vasiljev, A., Ahting, U., Nargang, F. E., Go, N. E., Habib, S. J., Kozany, C., Panneels, V., Sinning, I., Prokisch, H., Neupert, W., Nussberger, S. & Rapaport, D. (2004). Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ ATP carrier across membranes. Molecular biology of the cell, 15(3), 1445–1458. https://doi.org/10.1091/mbc.e03- 05-0272
Vögtle, F. N., Brändl, B., Larson, A., Pendziwiat, M., Friederich, M. W., White, S. M., Basinger, A., Kücükköse, C., Muhle, H., Jähn, J. A., Keminer, O., Helbig, K. L., Delto, C. F., Myketin, L., Mossmann, D., Burger, N., Miyake, N., Burnett, A., van Baalen, A., Lovell, M. A., Matsumoto N., Walsh, M., Yu, H.C., Shinde, D.N., Stephani, U., Van Hove, J.L.K., Müller, F.J. & Helbig, I. (2018). Mutations in PMPCB Encoding the Catalytic Subunit of the Mitochondrial Presequence Protease Cause Neurodegeneration in Early Childhood. American journal of human genetics, 102(4), 557–573. https://doi.org/10.1016/j.ajhg.2018.02.014
Wenz, L. S., Ellenrieder, L., Qiu, J., Bohnert, M., Zufall, N., van der Laan, M., Pfanner, N., Wiedemann, N. & Becker, T. (2015). Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis. The Journal of cell biology, 210(7), 1047–1054. https://doi.org/10.1083/jcb.201504119
Wiedemann, N., Truscott, K. N., Pfannschmidt, S., Guiard, B., Meisinger, C. & Pfanner, N. (2004). Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. The Journal of biological chemistry, 279(18), 18188–18194. https://doi. org/10.1074/jbc.M400050200
Wrobel, L., Topf, U., Bragoszewski, P., Wiese, S., Sztolsztener, M. E., Oeljeklaus, S., Varabyova, A., Lirski, M., Chroscicki, P., Mroczek, S., Januszewicz, E., Dziembowski, A., Koblowska, M., Warscheid, B. & Chacinska, A. (2015). Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature,524(7566), 485–488. https:// doi.org/10.1038/nature14951
Yablonska, S., Ganesan, V., Ferrando, L. M., Kim, J., Pyzel, A., Baranova, O. V., Khattar, N. K., Larkin, T. M., Baranov, S. V., Chen, N., Strohlein, C. E., Stevens, D. A., Wang, X., Chang, Y. F., Schurdak, M. E., Carlisle, D. L., Minden, J. S. & Friedlander, R. M. (2019). Mutant huntingtin disrupts mitochondrial proteostasis by interacting with TIM23. Proceedings of the National Academy of Sciences of the United States of America, 116(33), 16593–16602. https:// doi.org/10.1073/pnas.1904101116
Yamamoto, H., Fukui, K., Takahashi, H., Kitamura, S., Shiota, T., Terao, K., Uchida, M., Esaki, M., Nishikawa, S., Yoshihisa, T., Yamano, K. & Endo, T. (2009). Roles of Tom70 in import of presequence-containing mitochondrial proteins. The Journal of biological chemistry, 284(46), 31635–31646. https://doi.org/10.1074/jbc.M109.041756
Zaremba-Niedzwiedzka, K., Caceres, E. F., Saw, J. H., Bäckström, D., Juzokaite, L., Vancaester, E., Seitz, K. W., Anantharaman, K., Starnawski, P., Kjeldsen, K. U., Stott, M. B., Nunoura, T., Banfield, J. F., Schramm, A., Baker, B. J., Spang, A. & Ettema, T. J. (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 541(7637), 353–358. https://doi.org/10.1038/ nature21031
Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M., Sollott, S. J. & Zorov, D. B. (2018). Mitochondrial membrane potential. Analytical biochemistry, 552, 50–59. https://doi. org/10.1016/j.ab.2017.07.009