2021, Number 3
<< Back
VacciMonitor 2021; 30 (3)
Uses of Pichia pastoris yeast in the production of recombinant proteins
García-Suárez J, Zumalacárregui-de-Cárdenas L, Santana-Vázquez Z
Language: Spanish
References: 50
Page: 153-163
PDF size: 390.62 Kb.
ABSTRACT
Pichia pastoris metylotrofic yeast (currently classified as Komagataella phaffii) is one of the most important yeast for the production of heterologous proteins. The work presents an analysis of the main characteristics that are marked in the production of recombinant proteins expressed in Pichia pastoris. It describes the strains available for the transformation and production of recombinant proteins expressed in P. pastoris, the main commercial vectors for expression, the most efficient promoters, selectable markers, the secretion signal, the methods used in genetic transformations and glycosylation patterns that occur. General recommendations are provided on bioprocess parameters such as media composition, pH, temperature, aeration velocity, induction, and feeding strategies to achieve high productivity values. The results of Pichia pastoris applications for the production of two vaccines in Cuba, the hepatitis B vaccine and the tick control vaccine are shown.
REFERENCES
Cregg JM, Cereghino JL, Shi J, Higgins DR. Recombinant Protein Expression in Pichia pastoris. Mol Biotechnol.2000;16(1):23-52.
Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014; 98(12):5301-17. doi: https://10.1007/s00253-014-5732-5.
Fickers P. Pichia pastoris: a workhorse for recombinant protein production. Curr Res Microbiol Biotechnol. 2014;2(3):354-63.
Huang J, Xia J, Yang Z, Guan F, Cui D, Guan G, et al. Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichia pastoris and its application for conversion of microalgae oil to biodiesel. Biotechnol Biofuels. 2014; 7:111-23. doi. https://10.1186/1754-6834-7-111.
Mohandesi N, Siadat S, Haghbeen K, Hesampour A. Cloning and expression of Saccharomyces cerevisiae SUC2 gene in yeast platform and characterization of recombinant enzyme biochemical properties. 3 Biotech. 2016; 6(2):129. doi:https://10.1007/s13205-016-0441-7.
Pillaca-Pullo O, Feitosa V, Soares I, Pessoa-Jr A. Estudio del pH y la concentración de glicerol para la producción de antígeno recombinante de Plasmodium vivax usando Pichia pastoris. Revista ECI Perú. 2015; 11(2):19-23. Disponible en: http://www.reddeperuanos.com/revista/eci2015vrevista/03biologiapillacaplenariacopia.pdf.
Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev.2000;24:45-66.
Poutou-Piñales R, Córdoba-Ruiz HA, Barrera-Avellaneda L, Delgado-Boada J. Carbon source feeding strategies for recombinant protein expression in Pichia pastoris and Pichia methanolica. Afr J Biotechnol.2010; 9(15):2173-84.
Li H, Zhang T, Li J, Li H, Xua Y, Yu J. Expression of Zea mays transglutaminase in Pichia pastoris under di?erent promoters and its impact on properties of acidi?ed milk protein concentrate gel. J Sci Food Agric. 2019;99:4518-23. doi: https://10.1002/jsfa.9688.
Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K. Addition of oleic acid increases expression of recombinant human serum albumin by the AOX2 promoter in Pichia pastoris. J Biosci Bioeng. 2000; 89(5): 479-84.
Garrigós-Martínez J, Vuoristo K, Nieto-Taype M, Tähtiharju J, Uusitalo J, Tukiainen P, et al. Bioprocess performance analysis of novel methanol-independent promoters for recombinant protein production with Pichia pastoris. Microb Cell Fact. 2021;20:74-86. doi:https://10.1186/s12934-021-01564.
Vogl T, Fischer J, Hayden P, Wasmayer R, Stumberger L, Glieder A. Orthologous promoters from related methylotrophic yeasts surpass expression of endogenous promoters of Pichia pastoris. AMB Expr. 2020;10:38-46. doi:https://10.1186/s13568-020-00972-1.
Li P, Anukanth A, Gao XG, Ilangovan K, Suzara VV, Düzgünes N, et al. Expression of Recombinant Proteins in Pichia pastoris. Appl Biochem Biotechnol. 2007;142(2):105-24.
Higgins DR, Busser K, Comiskey J, Whittier PS, Purcell TJ, Hoeffler JP. Small Vectors for Expression Based on Dominant Drug Resistance with Direct Multicopy Selection. In: Higgins DR, Cregg JM (eds). Pichia Protocols, Methods in Molecular Biology(tm), vol 103. New Jersey: Humana Press; 1998.p. 41-53.
Drocourt D, Calmels T, Reynes JP, Baron M, Tiraby G. Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Res. 1990; 18(13):4009.
Kimura M, Takatsuki A, Yamaguchi I. Blasticidin S deaminase gene from Aspergillus terreus (BSD): a new drug resistance gene for transfection of mammalian cells. Biochim Biophys.1994;1219(3): 653-9.
Scorer C, Clare J, McCombie W, Romanos MA, Sreekrishna K. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Nat Biotechnol. 1994;12:181-4.
Sunga AJ, Cregg JM. The Pichia pastoris formaldehyde dehydrogenase gene (FLD1) as a marker for selection of multicopy expression strains of P. pastoris. Gene. 2004;330:39-47.
Kottmeier K, Ostermann K, Bley T, Rödel G. Hydrophobin signal sequence mediates efficient secretion of recombinant proteins in Pichia pastoris. Appl Microbiol Biotechnol. 2011; 91(1): 133-41.
Liang S, Li C, Ye Y, Lin Y. Endogenous signal peptides efficiently mediate the secretion of recombinant proteins in Pichia pastoris. Biotechnol Lett. 2013; 35(1): 97-105.
De Pourcq K, De Schutter K. Callewaert N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol. 2010; 87:1617-31.
Yang J, Jiang W, Yang S. mazF as a counterselectable marker for unmarked genetic modification of Pichia pastoris. FEMS Yeast Res. 2009; 9(4): 600-9.
Pan R, Zhang J, Shen WL, Tao ZQ, Li SP, Yan X. Sequential deletion of Pichia pastoris genes by a self-excisable cassette. FEMS Yeast Res. 2011;11(3):292-8.
Li S, Sing S, Wang Z. Improved expression of Rhizopus oryzae a-amylase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 2011; 79(1): 142-8.
Jacobs P, Geysens S, Vervecken W, Contreras R, Nico-Callewaert N. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc. 2009; 4(1):58-70.
Beck A, Cochet O, Wurch T. GlycoFi's technology to control the glycosylation of recombinant therapeutic proteins. Expert Opin Drug Discov.2010;5(1): 95-111.
Li H, Sethuraman N, Stadheim T, Zha D, Prinz B, Ballew N, et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol. 2006; 24(2): 210-5.
Cereghino GP, Cereghino JL, Ilgen C, Cregg JM. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol. 2002;13(4):329-32.
Julien C. Production of Humanlike Recombinant Proteins in Pichia pastoris from Expression Vector to Fermentation Strategy. BioProcess Int.2006;4(1):22-31.
Argentinian AntiCovid Consortium. Structural and functional comparison of SARS-CoV-2-spike receptor binding domain produced in Pichia pastoris and mammalian cells. Sci Rep. 2020; 10(1):21779. doi: https://10.1038/s41598-020-78711-6.
Invitrogen. Pichia fermentation process guidelines. Massachusetts: Invitrogen;2000.
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system.Yeast.2005;22: 249-70.
Celik E, Calik P, Oliver S. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast. 2009; 26(9):473-84.
Cos O, Ramón R, Montesinos J, Valero F. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters, A review. Microb Cell Fact. 2006; 5:17.
D'Anjou M, Daugulis A. Mixed-feed exponential feeding for fed-batch culture of recombinant methylotrophic yeast. Biotechnol Lett. 2000; 22(5): 341-6.
Jorda J, Jouhten P, Camara H, Maaheimo H, Joan Albiol J, Ferrer P. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: methanol mixtures. Microb Cell Fact. 2012;11:57.
Katla S, Pavan SS, Mohan N, Sivaprakasam S. Biocalorimetric monitoring of glycoengineered P. pastoris cultivation for the production of recombinant huIFNa2b, A quantitative study based on mixed feeding strategies. Biotechnol Prog. 2020; 36(3):e2971. doi:https://10.1002/btpr.2971.
Celik E, Calik P, Oliver S. Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: Effects of methanol feeding rate. Biotechnol Bioeng. 2010; 105(2): 317-29.
Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B et al. The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res. 2009;8(3): 1380-92. doi:https://org/10.1021/pr8007623.
Niu H, Jost L, Pirlot N, Sassi H, Daukandt M, Rodriguez C, et al. A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut+/pAOX1-lacZ strain. Microb Cell Fact. 2013; 12:33. doi: https://10.1186/1475-2859-12-33.
Berrios J, Flores MO, Díaz-Barrera A, Altamirano C, Martínez I, Cabrera Z. A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of Pichia pastoris: temperature effect and scale-up simulation. J Ind Microbiol Biotechnol. 2017; 44(3):407-11. doi:https://10.1007/s10295-016-1895-7.
Ye J, Ly J, Watts K, Hsu A, Walker A, McLaughlin K, et al. Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog. 2011; 27: 1744-50. doi:https://10.1002/btpr.695.
Tomé-Amat J, Fleischer L, Parker SA, Bardliving CL, Batt CA. Secreted production of assembled Norovirus virus-like particles from Pichia pastoris. Microb Cell Fact. 2014;13:134-42. doi:https://10.1186/s12934-014-0134-z.
Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014; 98:5301-17. doi:https://10.1007/s00253-014-5732-5.
Hardy E, Martínez E, Diago D, Díaz R, González D, Herrera L. Large-scale Production of recombinant Hepatitis B Surface Antigen from Pichia pastoris. J Biotecnol.2000; 77(2-3): 157-67.
Organización Panamericana de la Salud. Experiencia cubana en la producción local de medicamentos, transferencia de tecnologías y mejoramiento en el acceso a la salud, 2da. ed., García-Delgado BM, Uramis-Díaz E, Fajardo ME (eds). La Habana: Editorial Ciencias Médicas; 2019. Disponible en: https://iris.paho.org/handle/10665.2/53037.
Vargas-Hernández M, Santana-Rodríguez E, Montero-Espinosa C, Sordo-Puga Y, Acosta-Hernández A, Fuentes-Rodríguez Y, et al. Estabilidad, seguridad e inmunidad protectora de la vacuna Gavac(r) sometida a estrés térmico. Biotecnol Apl. 2018.35(1):1221-7. Dispobible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1027-28522018000100003.
de la Fuente J, Almanzán C, Canales M, Pérez de la Lastra J, Kocan K, Willadsen P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev. 2007;8(1): 23-8.
Suárez M, Rubi J, Pérez D, Córdova V, Salazar Y, Vielma A, et al. High impact and effectiveness of Gavac(tm) vaccine in the national program for control of bovine ticks Rhipicephalus microplus in Venezuela. Livest Sci. 2016;187:8-52. doi:https://10.1016/j.livsci.2016.02.005.
Obregón-Alvarez D, Corona-González B, Rodríguez-Mallón A, Rodríguez- Gonzalez I, Alfonso P, Noda-Ramos AA. Ticks and Tick-Borne Diseases in Cuba, Half a Century of Scientific Research. Pathogens. 2020; 9(8):616. doi: https://10.3390/pathogens9080616.