2021, Número 3
<< Anterior Siguiente >>
VacciMonitor 2021; 30 (3)
Vacunas contra la COVID-19: desarrollo, estrategias, tipos y reticencia al uso de la vacunación
Shaukat A, Hussain K, Shehzadi N
Idioma: Ingles.
Referencias bibliográficas: 60
Paginas: 145-152
Archivo PDF: 291.54 Kb.
RESUMEN
El desarrollo de vacunas utilizando diferentes plataformas es una de las estrategias importantes para abordar la pandemia de COVID-19. La necesidad mundial de vacunas requiere enfoques de vacunas eficaces y la colaboración entre las empresas farmacéuticas y biotecnológicas, los gobiernos y los sectores industrial y académico. Alrededor del 72% de los candidatos vacunales están siendo desarrolladas por el sector privado, mientras que el 28%, por el sector público y diferentes organizaciones sin fines de lucro. Las vacunas contra la COVID-19 se basan en virus completos (inactivados o atenuados), vectores virales (replicantes o no), subunidades antigénicas (proteínas o péptidos), ácidos nucleicos (ARN o ADN) o partículas similares a virus. Aspectos importantes del desarrollo de vacunas incluyen la flexibilidad de fabricación, la velocidad, el costo, la seguridad, la inmunogenicidad celular y humoral, la estabilidad de la vacuna y el mantenimiento de la cadena de frío. Las vacunas se pueden preparar con precisión utilizando diferentes plataformas de fabricación, biología computacional, síntesis de genes, diseño de antígenos basado en estructuras e ingeniería de proteínas. La confianza individual, la conveniencia y la complacencia son factores que afectan la actitud hacia la aceptación de la vacunación contra la COVID-19. Esto podría complicarse por factores sociodemográficos, psicológicos, cognitivos y culturales.
REFERENCIAS (EN ESTE ARTÍCULO)
Badgujar KC, Badgujar VC, Badgujar SB. Vaccine development against coronavirus (2003 to present): An overview, recent advances, current scenario, opportunities and challenges. Diabetes Metab Syndr.2020;14(5):1361-76. doi: https://10.1016/j.dsx.2020.07.022.
Salvatori G, Luberto L, Maffei M, Aurisicchio L, Roscilli G, Palombo F, et al. SARS-CoV-2 spike protein: an optimal immunological target for vaccines. J Transl Med 2020; 18:222. doi: https://10.1186/s12967-020-02392
Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci 2004;101(17): 6641-6.
Liang Z, Zhu H, Wang X, Jing B, Li Z, Xia X, et al. Adjuvants for coronavirus vaccines. Front Immunol 2020;11: 589833. doi: https://10.3389/fimmu.2020.589833.
Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 vaccines at pandemic speed. N Engl J Med.2020;382(21):1969-73. doi: https://10.1056/NEJMp2005630.
Le TT, Andreadakis Z, Kumar A, Román RG, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020;19(5):305-6. doi: https://10.1038/d41573-020-00073-5.
Gorry C. SOBERANA, Cuba's COVID-19 vaccine candidates: Dagmar García-Rivera PhD, Director of Research, Finlay Vaccine Institute. MEDICC Rev.2020:22(4):10-5. https://10.37757/MR2020.V22.N4.11.
Vérez-Bencomo V. Soberana: Clinical trials coming soon. Guardian. 2020;1939:12. Available at: https://search.informit.org/toc/10.3316/guasyd.2020_n1939.
Burki T. Behind Cuba's successful pandemic response. Lancet Infect Dis.2021;21(4): 465-6. doi:https://10.1016/S1473-3099(21)00159-6.
Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017;543(7644): 248-51. doi: https://10.1038/nature21428.
Graham BS. Rapid COVID-19 vaccine development. Science.2020; 368(6494): 945-6.
Lee J. These 23 companies are working on coronavirus treatments or vaccines - here's where things stand. New York: Market watch; 2020. Available at: https://www.marketwatch.com/story/these-nine-companies-are-working-on-coronavirus-treatments-or-vaccines-heres-where-things-stand-2020-03-06.
World Health Organization. List of stringent regulatory authorities (SRAs). Geneva: World Health Organization; 2020. Available at: https://www.who.int/medicines/regulation/sras/en/. https://www.who.int/initiatives/who-listed-authority-reg-authorities/SRAs
Coalition for Epidemic Preparedness Innovations. CEPI survey assesses potential COVID-19 vaccine manufacturing capacity. Oslo: Coalition for Epidemic Preparedness Innovations; 2020. Available at: https://cepi.net/news_cepi/cepi-survey-assesses-potential-covid-19-vaccine-manufacturing-capacity/.
Kim JH, Marks F, Clemens JD. Looking beyond COVID-19 vaccine phase 3 trials. Nat Med 2021; 27(2): 205-11. doi:https://10.1038/s41591-021-01230-y.
Baker S, Koons C. Inside Operation Warp Speed's $18 Billion sprint for a vaccine. Bloomberg Businessweek. 2020. Available at: https://www.bloomberg.com/news/features/2020-10-29/inside-operation-warp-speed-s-18-billion-sprint-for-a-vaccine.
Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol.2020;11:298. doi: https://10.3389/fmicb.2020.00298.
Wang M, Jiang S, Wang Y. Recent advances in the production of recombinant subunit vaccines in Pichia pastoris. Bioengineered.2016; 7(3): 155-65. doi: https://10.1080/21655979.2016.1191707.
World Health Organization. DRAFT Landscape of COVID-19 Candidate Vaccines-14 July 2020 19. Geneva: World Health Organization; 2020. Available at: https://www.who.int/docs/default-source/blue-print/novel-coronavirus-landscape-covid-19-(7).pdf.
Mahase E. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ. 2021;372:296. doi: https://10.1136/bmj.n296.
Minor PD. Live attenuated vaccines: Historical successes and current challenges. Virology. 2015; 479-480: 379-92. doi: https://10.1016/j.virol.2015.03.032.
Muthumani K, Falzarano D, Reuschel EL, Tingey C, Flingai S, Villarreal DO, et al. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates. Sci Transl Med 2015; 7(301): 301ra132. doi: https://10.1126/scitranslmed.aac7462.
Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines (Basel). 2014; 2(3): 624-41. doi: https://10.3390/vaccines2030624.
Bezbaruah R, Borah P, Kakoti BB, Al- Shar'I NA, Chandrasekaran B, Jaradat DMM. Developmental landscape of potential vaccine candidates based on viral vector for prophylaxis of COVID-19. Front Mol Biosci.2021;8:635337. doi: https://10.3389/fmolb.2021.635337.
Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020; 395: 1845-54. doi: https://10.1016/ S0140-6736(20)31208-3.
Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020; 396: 479-88. doi: https://10.1016/S0140-6736(20)31605-6.
Garcia-Arriaza J, Garaigorta U, Perez P, Lazaro-Frias A, Zamora C, Gastaminza P, et al. COVID-19 vaccine candidates based on modified vaccinia Ankara expressing the SARS-CoV-2 spike induce robust T- and B-cell immune responses and fully efficacy in mice. J Virol.2021;95(7): e02260-20. doi: https://10.1128/JVI.02260-20.
Clinicaltrials.gov [database on internet]. Bethesda (MD): National Library of Medicine (US);2020. Safety, Tolerability and Immunogenicity of the Candidate Vaccine MVA-SARS-2-S against COVID-19; unique ID: NCT04569383. Available at: https://clinicaltrials.gov/ct2/show/NCT04569383.
Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet.2021; 397: 671-81. doi: https://10.1016/S0140-6736(21)00234-8.
Higgins TS, Wu AW, Illing EA, Sokoloski KJ, Weaver BA, Anthony BP, et al. Intranasal antiviral drug delivery and coronavirus disease 2019 (COVID-19): a state of the art review. Otolaryngol Head Neck Surg.2020; 163(4): 682-94. doi: https://10.1177/0194599820933170.
Chinese Clinical Trial Registry [database on internet]. Chengdu: Chinese Clinical Trial Registry;2020. A Phase I Clinical Trial of Influenza Virus Vector COVID-19 Vaccine for intranasal Spray (DelNS1-2019-nCoV-RBD-OPT1); unique ID: ChiCTR2000037782. Available at: www.chictr.org.cn/showprojen.aspx?proj=55421.
Jiang HD, Li JX, Zhang P, Huo X, Zhu FC. The COVID-19 Vaccine in Clinical Trials: Where Are We Now? Infect Dis Immun. 2021; 1(1): 43-51. doi: https://10.1097/ID9.0000000000000003.
Yi C, Yi Y, Li J. mRNA vaccines: possible tools to combat SARS-CoV-2. Virol Sin. 2020; 35(3): 259-62. doi: https://10.1007/s12250-020-00243-0.
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov. 2018; 17(4): 261-79. doi: https://10.1038/nrd.2017.243.
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New Engl J Med. 2021; 384(5): 403-16. doi: https://10.1056/NEJMoa2035389.
Food and Drug Administration US. Development and licensure of vaccines to prevent COVID-19, Guidance for Industry. Silver Spring (MD): US Department of Health and Human Services Food and Drug Administration; 2020. Available at: https://www.fda.gov/media/139638/download.
Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. New Engl J Med. 2020; 383(16): 1544-55. doi: https://10.1056/NEJMoa2024671.
Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019; 10: 594. doi: https://10.3389/fimmu.2019.00594.
Zhang KC, Fang Y, Cao H, Chen H, Hu T, Chen YQ, et al. Parental acceptability of COVID-19 vaccination for children under the age of 18 years: cross-sectional online survey. JMIR Pediatr Parent.2020; 3(2): e24827. doi: https://10.2196/24827.
World Health Organization. mRNA vaccines against COVID-19, Pfizer-BioNTech COVID-19 vaccine BNT162b2, prepared by the Strategic Advisory Group of Experts (SAGE) on immunization working group on COVID-19 vaccines. 22 December 2020. Geneva: World Health Organization; 2020. Available at: https://apps.who.int/iris/handle/10665/338096.
Food and Drug Administration. Fact sheet for healthcare providers administering vaccine (vaccination providers): emergency use authorization (EUA) of the Pfizer-BioNTech COVID-19 vaccine to prevent coronavirus disease 2019 (COVID-19). Silver Spring, MD: US Department of Health and Human Services Food and Drug Administration; 2021. Available at: https://www.fda.gov/media/144413/download.
Hobernik D, Bros M. DNA vaccines-how far from clinical use? Int J Mol Sci.2018; 19(11): 3605. doi: https://10.3390/ijms19113605.
Smith TR, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11(1): 2601. doi: https://10.1038/s41467-020-16505-0.
MacDonald NE, SAGE Working Group on Vaccine Hesitancy. Vaccine hesitancy definition, scope and determinants. Vaccine.2015; 33(34): 4161-4. doi: https://10.1016/j.vaccine.2015.04.036.
Sallam M, Dababseh D, Eid H, Al-Mahzoum K, Al-Haidar A, Taim D, et al. High Rates of COVID-19 Vaccine Hesitancy and Its Association with Conspiracy Beliefs, A Study in Jordan and Kuwait among Other Arab Countries. Vaccines (Basel).2021; 9(1):42. doi: https://10.3390/vaccines9010042.
World Health Organization/Europe. Vaccination and trust-How concerns arise and the role of communication in mitigating crises. Copenhagen: World Health Organization Regional Office for Europe; 2017. Available at: https://www.euro.who.int/__data/assets/pdf_file/0004/329647/Vaccines-and-trust.PDF
Vergara RJD, Sarmiento PJD, Lagman JDN. Building public trust, a response to COVID-19 vaccine hesitancy predicament. J Public Health (Oxf).2021;43(2): e291-e292. doi: https://10.1093/pubmed/fdaa282.
Ali M, Ahmad N, Khan H, Ali S, Akbar F, Hussain Z. Polio vaccination controversy in Pakistan. Lancet.2019; 394: 915-6. doi: https://10.1016/S0140-6736(19)32101-4.
Robertson E, Reeve KS, Niedzwiedz CL, Moore J, Blake M, Green M, et al. Predictors of COVID-19 vaccine hesitancy in the UK household longitudinal study. Brain Behav Immun 2021; 94: 41-50. doi: https://10.1016/j.bbi.2021.03.008.
Browne M, Thomson P, Rockloff MJ, Pennycook G. Going against the herd: psychological and cultural factors underlying the 'vaccination confidence gap'. PLoS One. 2015; 10(9): e0132562. doi: https://10.1371/journal.pone.0132562.
Hornsey MJ, Harris EA, Fielding KS. The psychological roots of anti-vaccination attitudes: A 24-nation investigation. Health Psychol.2018; 37(4): 307-15. doi: https://1010.1037/hea0000586.
Lin C, Tu P, Beitsch LM. Confidence and receptivity for COVID-19 vaccines: A Rapid Systematic Review. Vaccines (Basel).2020; 9(1):16. doi: https://10.3390/vaccines9010016.
de Figueiredo A, Simas C, Karafillakis E, Paterson P, Larson HJ. Mapping global trends in vaccine confidence and investigating barriers to vaccine uptake: a large-scale retrospective temporal modelling study. Lancet. 2020; 396: 898-908. doi: https://10.1016/S0140-6736(20)31558-0.
Wong LP, Alias H, Wong PF, Lee HY, AbuBakar S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. Hum Vaccin Immunother. 2020; 16(9): 2204-14. doi: https://10.1080/21645515.2020.1790279.
Lazarus JV, Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, et al. A global survey of potential acceptance of a COVID-19 vaccine. Nat Med. 2021; 27(2): 225-8. doi: https://10.1038/s41591-020-1124-9.
Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, et al. A thermostable mRNA vaccine against COVID-19. Cell. 2020; 182(5): 1271-83. doi: https://10.1016/j.cell.2020.07.024.
Harapan H, Wagner AL, Yufika A, Winardi W, Anwar S, Gan AK, et al. Acceptance of a COVID-19 vaccine in southeast Asia: a cross-sectional study in Indonesia. Front Public Health.2020; 8: 381. doi: https://10.3389/fpubh.2020.00381.
Neumann-Böhme S, Varghese NE, Sabat I, Barros PP, Brouwer W, van Exel J, et al. Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-19. Eur J Health Econ.2020; 21: 977-82. doi: https://10.1007/s10198-020-01208-6.
Chevallier C, Hacquin AS, Mercier H. COVID-19 vaccine hesitancy: Shortening the last mile. Trends Cogn Sci.2021; 25(5): 331-3. doi: https://10.1016/j.tics.2021.02.002.
Naeem SB, Bhatti R, Khan A. An exploration of how fake news is taking over social media and putting public health at risk. Health Info Libr J. 2020; 37. doi: https://10.1111/hir.12320.