2021, Number 4
<< Back Next >>
Rev Educ Bioquimica 2021; 40 (4)
Eucariogénesis y el origen del núcleo de las células eucarióticas
Castro-Muñozledo F
Language: Spanish
References: 48
Page: 204-213
PDF size: 595.57 Kb.
ABSTRACT
While endosymbiosis is the most accepted mechanism to explain the appearance of
eukaryotic cells, the origin of the cell nucleus has been more complicated to clarify due
to its unique structural characteristics. Currently, prevailing hypotheses suggest that
the nuclear membrane originated: I) by plasma membrane invagination of an ancestral
prokaryote, II) by endosymbiosis between archaeobacteria and an eubacterial host, or III)
by the formation of a new membrane system, subsequent to the origin of mitochondria.
However, such mechanisms do not explain neither the appearance of the nuclear skeleton,
the complexes that constitute the pore, nor the modifications of the chromosomal
structure or the origin of mitosis. Here, we present the different arguments that led to
elaborate the endosymbiotic theory and the hypotheses proposed on the origin of the
eukaryotic nucleus. Emphasis is placed on new data and circumstantial evidence which
suggests that giant viruses, such as those belonging to the Medusavirus genus, may have
been involved in the formation of the eukaryotic nucleus. Future analyses should explain
the mechanisms underlying the horizontal transfer of genetic information between
endosymbionts to understand how some of the genes encoding mitochondrial or plastid
proteins were transferred to the genetic material found in the nucleus of the eukaryotic
cells. Since viral evolution could be independent and subsequent to the appearance of
eukaryotic cells, the lines of research should carefully examine the existing alternatives.
REFERENCES
Whitman WB. Coleman DC. Wiebe WJ. Prokaryotes: The unseen majority. Proc Natl Acad Sci U S A. 1998; 95:6578-83.
Govindarajan S. Amster-Choder O. Where are things inside a bacterial cell? Curr Op Microbiol. 2016; 33:83-90.
Brocks JJ. Logan GA. Buick R. Summons RE. Archean Molecular Fossils and the Early Rise of Eukaryotes. Science. 1999; 285:1033-36.
Droser ML. Gehling JG. The advent of animals: The view from the Ediacaran. Proc Natl Acad Sci USA. 2015; 112:4865-70.
Altmann R. Die elementarorganismen und ihre beziehungen zu den zellen. 1st ed. Leipzig, Germany. Verlag von Veit & comp; 1894; 145 pp.
Martin W. Kowallik KV. Annotated English translation of Mereschkowsky’s 1905 paper “Über Natur und Ursprung der Chromatophoren im Pflanzenreiche”. Eur J Phycol. 1999; 34:287-95.
Martin WF. Garg S. Zimorski V. Endosymbiotic theories for eukaryote origin. Phil Trans R Soc B. 2015; 370: 20140330.
Portier P. Les Symbiotes. Paris, Fr. Masson. 1918; 315 pp.
Wallin IE. The Mitochondria Problem. Am Nat. 1923; 57:255-61.
Sagan L. On the origin of mitosing cells. J Theor Biol. 1967; 14:225-74.
Margulis L. Symbiosis in Cell Evolution. San Francisco, CA. W. H. Freeman & Company. USA. 1981; 419 pp.
Lazcano A. Peretó J. On the origin of mitosing cells: A historical appraisal of Lynn Margulis endosymbiotic theory. J Theor Biol. 2017; 434:80-7.
Driessen RPC. Dame RT. Nucleoid-associated proteins in Crenarchaea. Biochem Soc Trans. 2011; 39(part 1):116-21.
Peeters E. Driessen RPC. Werner F. Dame RT. The interplay between nucleoid organization and transcription in archaeal genomes. Nat Rev Microbiol. 2015; 13:333-41.
Kisner JR. Kuwada NJ. Nucleoid mediated positioning and transport in bacteria. Current Genetics. 2020; 66:279-91.
Hetzer MW. Walther TC. Mattaj IW. Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol. 2005; 21:347-80.
Hetzer MW. Wente SR. Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell. 2009; 17:606-16.
Erickson ES. Mooren OL. Moore D. Krogmeier JR. Dunn RC. The role of nuclear envelope calcium in modifying nuclear pore complex structure. Can J Physiol Pharmacol. 2006; 84:309-18.
Bootman MD. Fearnley C. Smyrnias I. Macdonald F. Roderick HL An update on nuclear calcium signalling. J Cell Sci. 2009; 122, 2337-50.
Gibcus JH. Dekker J. The hierarchy of the 3D genome. Mol Cell. 2013; 49:773-82.
Deng W. Blobel GA. Manipulating nuclear architecture. Curr Opin Genet Dev. 2014; 25:1-7.
Cavalier-Smith T. Origin of the cell nucleus. BioEssays. 1988; 9:72-8.
Margulis L. Early Life. Boston, MA. Jones and Bartlett Publishers Inc. 1984; 79-83.
Martin W. Hoffmeister M. Rotte C. Henze K. An overview of endosymbiotic models for the origins of eukaryotes, their ATPproducing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem. 2001; 382:1521-39.
Devos D. Dokudovskaya S. Alber F. Williams R. Chait BT. Sali A. Rout MP. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2004; 2:e380.
Speijer D. Birth of the eukaryotes by a set of reactive innovations: New insights force us to relinquish gradual models. BioEssays. 2015; 37:1268-1276.
Wagner M. Horn M. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Op Biotechnol. 2006; 17:241-9.
Fuerst JA. Intracellular compartmentation in planctomycetes. Annu Rev Microbiol. 2005; 59:299-328.
Sagulenko E. Nouwens A. Webb RI. Green K. Yee B. Morgan G. Leis A. Lee K-C. Butler MK. Chia N. Pham UTP. Lindgreen S. Catchpole R. Poole AM. Fuerst JA. Nuclear pore-like structures in a compartmentalized bacterium. PLoS One. 2017; 12:e0169432.
Goksfr J. Evolution of eucaryotic cells. Nature. 1967; 214:1161.
Pickett-Heaps J. The evolution of mitosis and the eukaryotic condition. Biosystems. 1974; 6:37-48.
Hartman H. The origin of eukaryotic cell. Speculations Sci Technol. 1984; 7:77-81.
Durzyńska J. Goździcka-Józefiak A. Viruses and cells intertwined since the dawn of evolution. Virol J. 2015; 12:169.
Torres de Farias S. Jose MV. Prosdocimi F. Is it possible that cells have had more than one origin? Biosystems. 2021; 202:104371.
Campillo-Balderas JA. Lazcano A. Becerra A. Viral Genome Size Distribution Does not Correlate with the Antiquity of the Host Lineages. Front Ecol Evol. 2015; 3:143.
Erb ML. Kraemer JA. Coker JKC. Chaikeeratisak V. Nonejuie P. Agard DA. Pogliano J. A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. eLife 2014; 3:e03197.
Erickson HP. Taylor DW. Taylor KA. Bramhill D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci USA. 1996; 93:519-23.
Meier EL. Goley ED. Form and function of the bacterial cytokinetic ring. Curr Op Cell Biol. 2014; 26:19-27.
Zehr EA. Kraemer JA. Erb ML. Coker JK. Montabana EA. Pogliano J. Agard DA. The structure and assembly mechanism of a novel three-stranded tubulin filament that centers phage DNA. Structure. 2014; 22:539-48.
Chaikeeratisak V. Nguyen K. Khanna K. Brilot AF. Erb ML. Coker JKC. Vavilina A. Newton GL. Buschauer R. Pogliano K. Villa E. Agard DA. Pogliano P. Assembly of a nucleus-like structure during viral replication in bacteria. Science. 2017; 355:194-7.
Bell PJ. Viral eukaryogenesis:Was the ancestor of the nucleus a complex DNA virus? J Mol Evol. 2001; 53:251-6.
Bell PJL. The viral eukaryogenesis theory. In Origins Genesis, Evolution and Diversity of Life. J Seckbach, Editor. Dordrecht, Netherlands. Kluwver Academic Publishers. 2004; 347-394 pp.
Bell PJL. Eukaryogenesis: The origin of the eukaryotes. In Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 10. J. Seckbach Editor. Dordrecht, Netherlands. Springer. 2006; 287-306.
Yoshikawa G. Blanc-Mathieu R. Song C. Kayama Y. Mochizuki T. Murata K. Ogata H. Takemura M. Medusavirus, a novel large DNA virus discovered from hot spring water. J Virol. 2019; 93:e02130-18.
Takemura M. Yokobori S. Ogata H. Evolution of eukaryotic DNA polymerases via interaction between cells and large DNA viruses. J Mol Evol. 2015; 81:24-33.
Guglielminia J. Woo AC. Krupovic M. Forterre P. Gaia M. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc Natl Acad Sci USA. 2019; 116:19585-92.
Moniruzzaman M. Weinheimer AR. Martinez- Gutierrez CA. Aylward FO. Widespread endogenization of giant viruses shapes genomes of green algae. Nature. 2020; 588:141-5.
Woese C. Kandler O. Wheelis M. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA. 1990; 87:4576-4579.