2022, Number 1
<< Back Next >>
Rev Biomed 2022; 33 (1)
Oxidative stress and inflammation in heart attack: Keys to cardiac remodeling
Castro-Gerónimo VD, García-Rodríguez RV, Diosdado-Contreras M, Sánchez-Medina A, Moreno-Quirós CV, Méndez-Bolaina E
Language: Spanish
References: 56
Page: 33-43
PDF size: 179.43 Kb.
ABSTRACT
Acute coronary syndromes (ACS) are one of the leading causes of
mortality in the world population. This term is applied in patients in
whom there is suspicion or confirmation of ischemia or acute myocardial
infarction. These include non-ST-segment elevation myocardial infarction
(NSTEMI), ST-segment elevation infarction (STEMI), and unstable angina.
These syndromes lead to cardiac remodeling phenomena, with structural
and functional changes, closely related to chronic inflammatory states
that become pathological, mediated by cellular and humoral factors that
affect the quality of life of those who suffer from it. This article addresses
the relationship between inflammation and myocardial infarction, its
physiopathogenesis, the main chemical mediators, immunomodulation,
and the role of oxidative stress in post-infarction remodeling, offering tools
for the understanding and therapeutic approach of such complications.
For this, a descriptive review was carried out in databases from PubMed,
ScienceDirect, and ResearchGate, including information from the last five
years in basic and clinical science studies, highlighting the therapeutic
perspectives of this pathological spectrum for the improvement of the
diagnosis and prognosis of these illnesses.
REFERENCES
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019 Dec 1;25(12):1822–32.
Becerra-Partida EN, Casillas-Torres L, Becerra-Álvarez F. Prevalencia del síndrome coronario agudo en primer nivel de atención. Rev CONAMED. 2020;25(1):16–22.
Martinez B, Peplow P V. Immunomodulators and microRNAs as neurorestorative therapy for ischemic stroke. Neural Regen Res. 2017;12(6):865–74.
Yan W, Abu-El-Rub E, Saravanan S, Kirshenbaum LA, Arora RC, Dhingra S. Inflammation in myocardial injury: Mesenchymal stem cells as potential immunomodulators. Am J Physiol - Hear Circ Physiol. 2019;317(2):H213– 25.
Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol [Internet]. 2018 Oct 30 [cited 2021 May 22];72(18):2231–64. Available from: https://doi. org/10.1016/j.jacc.2018.08.1038
Gomez I, Duval V, Silvestre JS. Cardiomyocytes and Macrophages Discourse on the Method to Govern Cardiac Repair. Front Cardiovasc Med. 2018;5(October):1–9.
Panahi M, Papanikolaou A, Torabi A, Zhang JG, Khan H, Vazir A, et al. Immunomodulatory interventions in myocardial infarction and heart failure: A systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovasc Res. 2018;114(11):1445–61.
Fleit HB. Chronic Inflammation. In: Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms [Internet]. Elsevier Inc.; 2014 [cited 2021 May 19]. p. 300–14. Available from: https://www.ncbi. nlm.nih.gov/books/NBK493173/
Bolívar M, Toro M, Seijas M, Bolívar A, Bolívar-Jr M, Bolívar M, et al. Clínica de dolor transicional. Rev la Soc Española del Dolor [Internet]. 2020 [cited 2021 Sep 14];27(6):369–74. Available from: https://scielo. isciii.es/scielo.php?script=sci_arttext&pid=S1134- 80462020000600007&lng=es&nrm=iso&tlng=es
Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, et al. A guiding map for inflammation [Internet]. Vol. 18, Nature Immunology. Nature Publishing Group; 2017 [cited 2021 May 19]. p. 826–31. Available from: https://www.nature.com/ articles/ni.3790
Serhan CN. Treating inflammation and infection in the 21st century: New hints from decoding resolution mediators and mechanisms [Internet]. Vol. 31, FASEB Journal. FASEB; 2017 [cited 2021 May 19]. p. 1273–88. Available from: www.fasebj.org
Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM. The crucial roles of inflammatory mediators in inflammation: A review [Internet]. Vol. 11, Veterinary World. Veterinary World; 2018 [cited 2021 May 19]. p. 627–35. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5993766/
Hurtado Noblecilla E, Bartra Aguinaga A, Osada Liy J, León Jiménez F, Ochoa Medina M. Frecuencia de factores de riesgo cardiovascular en pacientes con síndrome isquémico coronario agudo, Chiclayo. Rev Medica Hered [Internet]. 2020 Jan 13 [cited 2021 May 19];30(4):224–31. Available from: http://www.scielo. org.pe/scielo.php?script=sci_arttext&pid=S1018-130X2 019000400003&lng=es&nrm=iso&tlng=pt
Neumann FJ, Sechtem U, Banning AP, Bonaros N, Bueno H, Bugiardini R, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes [Internet]. Vol. 41, European Heart Journal. Oxford University Press; 2020 [cited 2021 May 28]. p. 407–77. Available from: www.escardio.org/guidelines
Benedek I. Time Delays in Acute Myocardial Infarction – the Gender Perspective. J Cardiovasc Emergencies [Internet]. 2018 [cited 2021 May 28];4(2):63–4. Available from: https://www.jce.ro/wp-content/uploads/2018/06/ jce-2018-0014.pdf
Gelsomino F, Fiorentino M, Zompatori M, Poerio A, Melotti B, Sperandi F, et al. Programmed death-1 inhibition and atherosclerosis: Can nivolumab vanish complicated atheromatous plaques? [Internet]. Vol. 29, Annals of Oncology. Oxford University Press; 2018 [cited 2021 May 28]. p. 284–5. Available from: http://www. annalsofoncology.org/article/S0923753419350136/ fulltext
Borrayo-Sánchez G, Rosas-Peralta M, Pérez-Rodríguez G, Ramírez-Árias E, Almeida-Gutiérrez E, De J, et al. Acute myocardial infarction with ST-segment elevation: Code I. Vol. 56, Aportaciones originales Rev Med Inst Mex Seguro Soc. 2018.
Moreno PR, del Portillo JH. Isquemia miocárdica: conceptos básicos, diagnóstico e implicaciones clínicas. Segunda parte. Vol. 23, Revista Colombiana de Cardiologia. Elsevier B.V.; 2016. p. 500–7.
Chen B, Huang S, Su Y, Wu YJ, Hanna A, Brickshawana A, et al. Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation. Circ Res. 2019;125(1):55–70.
Ooi BK, Goh BH, Yap WH. Oxidative stress in cardiovascular diseases: Involvement of Nrf2 antioxidant redox signaling in macrophage foam cells formation [Internet]. Vol. 18, International Journal of Molecular Sciences. MDPI AG; 2017 [cited 2021 May 23]. p. 2336. Available from: www.mdpi.com/journal/ijms
Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ [Internet]. 2016 [cited 2021 May 23];2(4):153. Available from: https://pubmed. ncbi.nlm.nih.gov/30276293/
Simion A, Jurcau A. The Role of Antioxidant Treatment in Acute Ischemic Stroke: Past, Present and Future. Neurol - Res Surg. 2019 Dec 30;
Komsiiska D. Oxidative stress and stroke: a review of upstream and downstream antioxidant therapeutic options [Internet]. Vol. 28, Comparative Clinical Pathology. Springer London; 2019 [cited 2021 May 23]. p. 915–26. Available from: https://link.springer.com/ article/10.1007/s00580-019-02940-z
Orellana-Urzúa S, Rojas I, Líbano L, Rodrigo R. Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Curr Pharm Des. 2020 Jul 9;26(34):4246–60.
Pan W, Zhu Y, Meng X, Zhang C, Yang Y, Bei Y. Immunomodulation by Exosomes in Myocardial Infarction. J Cardiovasc Transl Res. 2019;12(1):28–36.
Bansal SS, Ismahil MA, Goel M, Zhou G, Rokosh G, Hamid T, et al. Dysfunctional and Proinflammatory Regulatory T-Lymphocytes Are Essential for Adverse Cardiac Remodeling in Ischemic Cardiomyopathy. Circulation. 2019;139(2):206–21.
Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol [Internet]. 2018;18(12):733–44. Available from: http://dx.doi.org/10.1038/s41577-018-0065-8
Emami H, Singh P, Macnabb M, Vucic E, Lavender Z, Rudd JHF, et al. Splenic metabolic activity predicts risk of future cardiovascular events: Demonstration of a cardiosplenic axis in humans. JACC Cardiovasc Imaging. 2015 Feb 1;8(2):121–30.
Heusch G. The Spleen in Myocardial Infarction. Circ Res [Internet]. 2019 Jan 4 [cited 2021 Sep 15];124(1):26–8. Available from: https://www.ahajournals.org/doi/ abs/10.1161/CIRCRESAHA.118.314331
Del Porto F, Cifani N, Proietta M, Perrotta S, Dito R, di Gioia C, et al. Regulatory T CD4 + CD25+ lymphocytes increase in symptomatic carotid artery stenosis. Ann Med [Internet]. 2017 May 19 [cited 2021 May 23];49(4):283– 90. Available from: https://www.tandfonline.com/action/ journalInformation?journalCode=iann20
Bansal SS, Ismahil MA, Goel M, Patel B, Hamid T, Rokosh G, et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ Hear Fail. 2017;10(3).
Kingery JR, Hamid T, Lewis RK, Ismahil MA, Bansal SS, Rokosh G, et al. Leukocyte iNOS is required for inflammation and pathological remodeling in ischemic heart failure. Basic Res Cardiol. 2017;112(2).
Jia D, Jiang H, Weng X, Wu J, Bai P, Yang W, et al. Interleukin-35 Promotes Macrophage Survival and Improves Wound Healing after Myocardial Infarction in Mice. Circ Res. 2019;124(9):1323–36.
Pareek M, Bhatt DL, Vaduganathan M, Biering-Sørensen T, Qamar A, Diederichsen ACP, et al. Single and multiple cardiovascular biomarkers in subjects without a previous cardiovascular event. Eur J Prev Cardiol [Internet]. 2017 Oct 1 [cited 2021 May 23];24(15):1648–59. Available from: https://pubmed.ncbi.nlm.nih.gov/28644092/
Guarner V, Rubio-Ruiz ME. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol [Internet]. 2015 [cited 2021 May 23];40:99–106. Available from: https://pubmed.ncbi.nlm.nih.gov/25341516/
Dos Santos JC, Cruz MS, Bortolin RH, De Oliveira KM, Góes de Araújo JN, Rezende Duarte VH, et al. Relationship between circulating VCAM-1, ICAM-1, E-selectin and MMP9 and the extent of coronary lesions. Clinics [Internet]. 2018 [cited 2021 May 23];73. Available from: http://www.scielo.br/scielo.php?script=sci_ arttext&pid=S1807-59322018000100228&lng=en&nrm =iso&tlng=en
Davies MJ, Hawkins CL. The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease [Internet]. Vol. 32, Antioxidants and Redox Signaling. Mary Ann Liebert Inc.; 2020 [cited 2021 May 23]. p. 957–81. Available from: www.liebertpub.com
Cheng D, Talib J, Stanley CP, Rashid I, Michaëlsson E, Lindstedt EL, et al. Inhibition of MPO (myeloperoxidase) attenuates endothelial dysfunction in mouse models of vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol [Internet]. 2019 [cited 2021 May 23];39(7):1448–57. Available from: https://www.ahajournals.org/doi/suppl/10.1161/ ATVBAHA.119.312725.
Aydin S, Ugur K, Aydin S, Sahin İ, Yardim M. Biomarkers in acute myocardial infarction: current perspectives. Vasc Health Risk Manag [Internet]. 2019 [cited 2021 Sep 15];15:1. Available from: /pmc/articles/PMC6340361/
Wang XY, Zhang F, Zhang C, Zheng LR, Yang J. The Biomarkers for Acute Myocardial Infarction and Heart Failure. Biomed Res Int. 2020;2020.
Madigan M, Atoui R. Therapeutic Use of Stem Cells for Myocardial Infarction. Bioeng 2018, Vol 5, Page 28 [Internet]. 2018 Apr 6 [cited 2021 Sep 18];5(2):28. Available from: https://www.mdpi.com/2306- 5354/5/2/28/htm
Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: A route to targeted therapies [Internet]. Vol. 14, Nature Reviews Cardiology. Nature Publishing Group; 2017 [cited 2021 May 23]. p. 133–44. Available from: https://pubmed.ncbi. nlm.nih.gov/27905474/
Plackett B. Cells or drugs? The race to regenerate the heart. Nature. 2021 Jun 1;594(7862):S16–7.
Welsh P, Grassia G, Botha S, Sattar N, Maffia P. Targeting inflammation to reduce cardiovascular disease risk: a realistic clinical prospect? [Internet]. Vol. 174, British Journal of Pharmacology. John Wiley and Sons Inc.; 2017 [cited 2021 May 23]. p. 3898–913. Available from: https:// pubmed.ncbi.nlm.nih.gov/28409825/
Wang QM, Liao JK. ROCKs as immunomodulators of stroke. Expert Opin Ther Targets. 2012;16(10):1013–25.
Kosmas CE, Silverio D, Sourlas A, Montan PD, Guzman E, Garcia MJ. Anti-inflammatory therapy for cardiovascular disease. Ann Transl Med [Internet]. 2019 Apr [cited 2021 May 23];7(7):147–147. Available from: https://pubmed. ncbi.nlm.nih.gov/31157268/
Bowen KJ, Sullivan VK, Kris-Etherton PM, Petersen KS. Nutrition and Cardiovascular Disease—an Update [Internet]. Vol. 20, Current Atherosclerosis Reports. Current Medicine Group LLC 1; 2018 [cited 2021 May 23]. p. 1–11. Available from: https://doi.org/10.1007/ s11883-018-0704-3
Marcum JA. Nutrigenetics/Nutrigenomics, Personalized Nutrition, and Precision Healthcare [Internet]. Vol. 9, Current Nutrition Reports. Springer; 2020 [cited 2021 May 25]. p. 338–45. Available from: https://link.springer. com/article/10.1007/s13668-020-00327-z
Peña-Romero AC, Navas-Carrillo D, Marín F, Orenes- Piñero E. The future of nutrition: Nutrigenomics and nutrigenetics in obesity and cardiovascular diseases [Internet]. Vol. 58, Critical Reviews in Food Science and Nutrition. Taylor and Francis Inc.; 2018 [cited 2021 May 25]. p. 3030–41. Available from: https://www.tandfonline. com/doi/abs/10.1080/10408398.2017.1349731
Perrone MA, Gualtieri P, Gratteri S, Ali W, Sergi D, Muscoli S, et al. Effects of postprandial hydroxytyrosol and derivates on oxidation of LDL, cardiometabolic state and gene expression: A nutrigenomic approach for cardiovascular prevention. J Cardiovasc Med [Internet]. 2019 Jul 1 [cited 2021 May 25];20(7):419– 26. Available from: https://journals.lww.com/ jcardiovascularmedicine/Fulltext/2019/07000/Effects_ of_postprandial_hydroxytyrosol_and.3.aspx
Weil BR, Neelamegham S. Selectins and Immune Cells in Acute Myocardial Infarction and Post-infarction Ventricular Remodeling: Pathophysiology and Novel Treatments. Front Immunol. 2019;0(FEB):300.
James EC, Dudler T, Michael SM, Schwaeble W. Cardioprotection by an anti-MASP-2 antibody in a murine model of myocardial infarction. Open Hear [Internet]. 2018 Jan 1 [cited 2021 Sep 18];5(1):e000652. Available from: https://openheart.bmj.com/content/5/1/ e000652
Gyöngyösi M, Haller PM, Blake DJ, Rendon EM. Meta-Analysis of Cell Therapy Studies in Heart Failure and Acute Myocardial Infarction. Circ Res [Internet]. 2018 [cited 2021 Sep 18];123(2):301–8. Available from: https://www.ahajournals.org/doi/abs/10.1161/ CIRCRESAHA.117.311302
Shafei AE-S, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, et al. Mesenchymal stem cell therapy: A promising cell-based therapy for treatment of myocardial infarction. J Gene Med [Internet]. 2017 Dec 1 [cited 2021 Sep 18];19(12):e2995. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ jgm.2995
Huang P, Wang L, Li Q, Xu J, Xu J, Xiong Y, et al. Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Res Ther 2019 101 [Internet]. 2019 Oct 10 [cited 2021 Sep 18];10(1):1–12. Available from: https://link.springer. com/articles/10.1186/s13287-019-1353-3
Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, et al. Engineered Exosomes With Ischemic Myocardium‐ Targeting Peptide for Targeted Therapy in Myocardial Infarction. J Am Heart Assoc [Internet]. 2018 Aug 7 [cited 2021 Sep 18];7(15). Available from: https://www. ahajournals.org/doi/abs/10.1161/JAHA.118.008737