2021, Number 3
<< Back Next >>
Rev Hematol Mex 2021; 22 (3)
FMS-like tyrosine kinase 3 (FLT3) gene: From the biogenesis to the medical practice
Garrote-SH
Language: Spanish
References: 84
Page: 162-174
PDF size: 285.53 Kb.
ABSTRACT
The FMS-like tyrosine kinase 3 (
FLT3) gene encodes an essential receptor in the
development, proliferation and survival of hematopoietic cells. This article describes
the biological characteristics of the gene, the normal and pathological functioning
of the protein, and the main mutations of interest in medical practice.
FLT3
is located on chromosome 13 and is made up of 24 exons. Protein synthesis and
subsequent activation depend on different cellular processes and the FLT3 ligand.
Among the most important alterations of the gene, the internal tandem duplication
in the coding region of the juxtamembrane domain (FLT3-ITD) and point mutations
in the tyrosine kinase domain (FLT3-TKD). These mutations are of special interest
for making therapeutic decisions in acute myeloid leukemia (AML). The FLT3-ITD
alteration is described in up to 25% of patients with acute myeloid leukemia and
is an independent predictor of poor prognosis and increased risk of relapse. The
allelic ratio (AR) FLT3-ITD, which reflects the leukemic burden, has a significant
role, where the AR ‹ 0.5 or ≥ 0.5 defines prognostic categories. Regarding therapeutic
regimens, clinical trials with inhibitors of the FLT3 protein, targeting both
FLT3-ITD and FLT3-TKD mutations, have opened a door to precision medicine in
acute myeloid leukemia, however, there are still obstacles to overcome such as
toxicity, specificity and resistance in the patient.
REFERENCES
Kazi JU, Rönnstrand L. FMS-like Tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiol Rev 2019; 99 (3): 1433-1466. doi: 10.1152/physrev.00029.2018.
Travaglini S, Angelini DF, Alfonso V, Guerrera G, Lavorgna S, Divona M, et al. Characterization of FLT3-ITDmut acute myeloid leukemia: molecular profiling of leukemic precursor cells. Blood Cancer J 2020; 10 (8): 85. doi: 10.1038/ s41408-020-00352-9.
Kreitman M, Noronha A, Yarden Y. Irreversible modifications of receptor tyrosine kinases. FEBS Lett 2018; 592 (13): 2199-2212. doi: 10.1002/1873-3468.13095.
Kabir NN, Kazi JU. Comparative analysis of human and bovine protein kinases reveals unique relationship and functional diversity. Genet Mol Biol 2011; 34 (4): 587-591. doi: 10.1590/S1415-47572011005000035.
Rosnet O, Schiff C, Pébusque MJ, Marchetto S, Tonnelle C, Toiron Y, et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood 1993; 82 (4): 1110-1119.
Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 1994; 91 (2): 459-463. doi: 10.1073/pnas.91.2.459.
Rosnet O, Matteï MG, Marchetto S, Birnbaum D. Isolation and chromosomal localization of a novel FMS-like tyrosine kinase gene. Genomics 1991; 9 (2): 380-385. doi: 10.1016/0888-7543(91)90270-o.
Sánchez D, Gargallo P, Romano V, Montero V, Cabrerizo R. Determinación de la mutación FLT3-ITD por dos métodos en pacientes con leucemia mieloide aguda: comparación e implementación de un nuevo método. Hematología 2018; 22 (2): 134-143.
Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 2019; 33 (2): 299-312. doi: 10.1038/ s41375-018-0357-9.
Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, et al. Identification of FLT3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 2005; 121: 295-306.
Larráyoz MJ, Mañú A, Ariceta B, Vázquez I, Aguilera-Díaz A, Fernández-Mercado M, et al. Diagnóstico molecular de alteraciones en el gen FLT3: impacto clínico, retos y propuestas. Genética Médica y Genómica 2019; 3 (3): 31-39.
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN Recommendations from an International Expert Panel. Blood 2017; 129 (4): 1-55. doi: 10.1182/ blood-2016-08-733196.
Picharski GL, Andrade DP, Fabro ALMR, Lenzi L, Tonin FS, Ribeiro RC, et al. The Impact of Flt3 gene mutations in acute promyelocytic leukemia: a meta-analysis. Cancers (Basel) 2019; 11 (9): 1311. doi: 10.3390/cancers 11091311.
Zhang Y, Zhang Y, Wang F, Wang M, Liu H, Chen X, et al. The mutational spectrum of FLT3 gene in acute lymphoblastic leukemia is different from acute myeloid leukemia. Cancer Gene Ther 2020; 27 (1): 81-88. doi: 10.1038/s41417-019- 0120-z.
Cheng J, Qu L, Wang J, Cheng L, Wang Y. High expression of FLT3 is a risk factor in leukemia. Mol Med Rep 2018; (2): 2885-2892. doi: 10.3892/mmr.2017.8232.
Fan Y, Cao Y, Bai X, Zhuang W. The clinical significance of FLT3 ITD mutation on the prognosis of adult acute promyelocytic leukemia. Hematology 2018; 23 (7): 379-384. doi: 10.1080/10245332.2017. 1415717.
Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al.Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 2014; 13 (2): 397-406. doi: 10.1074/mcp.M113.035600.
Testa U, Fossati C, Samoggia P, Masciulli R, Mariani G, Hassan HJ, et al. Expression of growth factor receptors in unilineage differentiation culture of purified hematopoietic progenitors. Blood 1996; 88 (9): 3391-3406.
McKenna HJ, de Vries P, Brasel K, Lyman SD, Williams DE. Effect of flt3 ligand on the ex vivo expansion of human CD34+ hematopoietic progenitor cells. Blood 1995; 86 (9): 3413-3420.
Rappold I, Ziegler BL, Köhler I, Marchetto S, Rosnet O, Birnbaum D, et al. Functional and phenotypic characterization of cord blood and bone marrow subsets expressing FLT3 (CD135) receptor tyrosine kinase. Blood 1997; 90 (1): 111-125.
Volpe G, Clarke M, Garcìa P, Walton DS, Vegiopoulos A, Del Pozzo W, et al. Regulation of the Flt3 gene in haematopoietic stem and early progenitor cells. PLoS One 2015; 10 (9): e0138257. doi: 10.1371/journal.pone.0138257.
Volpe G, Walton DS, Del Pozzo W, Garcia P, Dassé E, O'Neill LP, et al. C/EBPα and MYB regulate FLT3 expression in AML. Leukemia 2013; 27 (7): 1487-1496. doi: 10.1038/ leu.2013.23.
Jiang M, Xu S, Bai M, Zhang A. The emerging role of MEIS1 in cell proliferation and differentiation. Am J Physiol Cell Physiol 2021; 320 (3): C264-C269. doi: 10.1152/ ajpcell.00422.2020.
Liu X, Zhang F, Zhang Y, Li X, Chen C, Zhou M, et al. PPM1K regulates hematopoiesis and leukemogenesis through CDC20-mediated ubiquitination of MEIS1 and p21. Cell Rep 2018; 23 (5): 1461-1475. doi: 10.1016/j. celrep.2018.03.140.
Yao M, Gu Y, Yang Z, Zhong K, Chen Z. MEIS1 and its potential as a cancer therapeutic target (Review). Int J Mol Med 2021; 48 (3): 181. doi: 10.3892/ijmm.2021.5014.
Hasemann MS, Damgaard I, Schuster MB, Theilgaard- Mönch K, Sørensen AB, Mrsic A, et al. Mutation of C/ EBPalpha predisposes to the development of myeloid leukemia in a retroviral insertional mutagenesis screen. Blood 2008; 111 (8): 4309-4321. doi: 10.1182/ blood-2007-06-097790.
Reddy PN, Sargin B, Choudhary C, Stein S, Grez M, Müller- Tidow C, et al. Study Alliance Leukemia (SAL). SOCS1 cooperates with FLT3-ITD in the development of myeloproliferative disease by promoting the escape from external cytokine control. Blood 2012; 120 (8): 1691-1702. doi: 10.1182/blood-2010-08-301416.
Holmes ML, Carotta S, Corcoran LM, Nutt SL. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev 2006; 20 (8): 933-938. doi: 10.1101/gad.1396206.
Lyman SD, James L, Zappone J, Sleath PR, Beckmann MP, Bird T. Characterization of the protein encoded by the flt3 (flk2) receptor-like tyrosine kinase gene. Oncogene 1993; 8 (4): 815-822.
Maroc N, Rottapel R, Rosnet O, Marchetto S, Lavezzi C, Mannoni P, et al. Biochemical characterization and analysis of the transforming potential of the FLT3/FLK2 receptor tyrosine kinase. Oncogene 1993; 8 (4): 909-918.
Lennartsson J, Rönnstrand L. Stem cell factor receptor/c- Kit: from basic science to clinical implications. Physiol Rev 2012; 92 (4): 1619-1649. doi: 10.1152/physrev.00046.2011.
Verstraete K, Vandriessche G, Januar M, Elegheert J, Shkumatov AV, Desfosses A, et al. Structural insights into the extracellular assembly of the hematopoietic Flt3 signaling complex. Blood 2011; 118 (1): 60-68.doi: 10.1182/ blood-2011-01-329532.
Khalid A, Aslam S, Ahmed M, Hasnain S, Aslam A. Risk assessment of FLT3 and PAX5 variants in B-acute lymphoblastic leukemia: a case-control study in a Pakistani cohort. Peer J 2019; 7: e7195. doi: 10.7717/peerj.7195.
Marhäll A, Heidel F, Fischer T, Rönnstrand L. Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation. Ann Hematol 2018; 97 (5): 773-780. doi: 10.1007/s00277-018-3245-5.
Lavagna C, Marchetto S, Birnbaum D, Rosnet O. Identification and characterization of a functional murine FLT3 isoform produced by exon skipping. J Biol Chem 1995; 270 (7): 3165-3171. doi: 10.1074/jbc.270.7.3165.
Tsapogas P, Mooney CJ, Brown G, Rolink A. The cytokine Flt3-ligand in normal and malignant hematopoiesis. Int J Mol Sci 2017; 18 (6): 1115. doi: 10.3390/ijms18061115.
Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004; 13 (2): 169-178. doi: 10.1016/s1097-2765(03)00505-7.
Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002; 21 (16): 2555-2563. doi: 10.1038/sj.onc.1205332.
Kazi JU, Chougule RA, Li T, Su X, Moharram SA, Rupar K, et al. Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant FLT3-ITD. Cell Mol Life Sci 2017; 74 (14): 2679-2688. doi: 10.1007/ s00018-017-2494-0.
Turner AM, Lin NL, Issarachai S, Lyman SD, Broudy VC. FLT3 receptor expression on the surface of normal and malignant human hematopoietic cells. Blood 1996; 88 (9): 3383-3390.
Muñoz D, Prada-Arismendy J, Castillo E. El papel de FLT3 como biomarcador en leucemia mieloide aguda. Arch Med 2018; 4 (1): 1-9. doi: 10.3823/1381.
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and clinical evidence. J Clin Med 2020; 9 (9): 2934. doi: 10.3390/jcm9092934.
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20 (11): 1242-1253. doi: 10.1038/nm.3739.
Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 2003; 5 (5): 461-466. doi: 10.1038/ncb983.
Jastrzębski K, Zdżalik-Bielecka D, Mamińska A, Kalaidzidis Y, Hellberg C, Miaczynska M. Multiple routes of endocytic internalization of PDGFRβ contribute to PDGF-induced STAT3 signaling. J Cell Sci 2017; 130 (3): 577-589. doi: 10.1242/jcs.191213.
Milne P, Wilhelm-Benartzi C, Grunwald MR, Bigley V, Dillon R, Freeman SD, et al. Serum Flt3 ligand is a biomarker of progenitor cell mass and prognosis in acute myeloid leukemia. Blood Adv 2019; 3 (20): 3052-3061. doi: 10.1182/ bloodadvances.2019000197.
Lyman SD, James L, Johnson L, Brasel K, de Vries P, Escobar SS, et al. Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood 1994; 83 (10): 2795-2801.
Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature 1994; 368 (6472): 643-648. doi: 10.1038/368643a0.
Wodnar-Filipowicz A, Lyman SD, Gratwohl A, Tichelli A, Speck B, Nissen C. Flt3 ligand level reflects hematopoietic progenitor cell function in aplastic anemia and chemotherapy-induced bone marrow aplasia. Blood 1996; 88 (12): 4493-4499.
Kokonozaki M, Kanellou P, Pappa CA, Vyzoukaki R, Sarantoulaki S, Stavroulaki E, et al. Serum levels of soluble FLT3 ligand in patients with active multiple myeloma constitute marker of bone marrow plasma cell proliferative activity. Crit Rev Oncog 2017; 22 (3-4): 255-262. doi: 10.1615/ CritRevOncog.2018021355.
Steiner N, Hajek R, Sevcikova S, Borjan B, Jöhrer K, Göbel G, et al. High levels of FLT3-ligand in bone marrow and peripheral blood of patients with advanced multiple myeloma. PLoS One 2017; 12 (7): e0181487. doi: 10.1371/ journal.pone.0181487.
Rinaldi I, Louisa M, Mulya Sari R, Arwanih E. FLT3-ITD Mutation and FLT3 Ligand plasma level were not associated with one-year survival of indonesian acute myeloid leukemia patients. Onco Targets Ther 2021; 14: 1479-1486. doi: 10.2147/OTT.S282842.
Durai V, Bagadia P, Briseño CG, Theisen DJ, Iwata A, Davidson JT, et al. Altered compensatory cytokine signaling underlies the discrepancy between Flt3-/- and Flt3l-/- mice. J Exp Med 2018; 215 (5): 1417-1435. doi: 10.1084/ jem.20171784.
Manz MG. Plasmacytoid dendritic cells: origin matters. Nat Immunol 2018; 19 (7): 652-654. doi: 10.1038/s41590- 018-0143-x.
De Arruda VYN, Matsuzaki LN, Chauffaille ML. FMS-related tyrosine kinase 3 internal tandem duplication (FLT3-ITD): a villain among others. Rev Bras Hematol Hemoter 2017; 39 (3): 283-284. doi: 10.1016/j.bjhh.2017.03.001.
Cao T, Jiang N, Liao H, Shuai X, Su J, Zheng Q. The FLT3-ITD mutation and the expression of its downstream signaling intermediates STAT5 and Pim-1 are positively correlated with CXCR4 expression in patients with acute myeloid leukemia. Scientific Reports 2019; 9:12209. doi: org/10.1038/ s41598-019-48687-z.
Nakao M, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10 (12): 1911-1918.
González E, Grille S, Vales V, Boada M, Zanella LM, Leal D, et al. Estudio del ratio de FLT3-ITD como factor pronóstico en leucemias agudas mieloides. Rev Méd Urug 2016; 32 (3): 20-26.
Liu SB, Dong HJ, Bao XB, Qiu QC, Li HZ, Shen HJ, et al. Impact of FLT3-ITD length on prognosis of acute myeloid leukemia. Haematologica 2019; 104 (1): e9-e12. doi: 10.3324/haematol. 2018.191809.
Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97 (8): 2434-2439. doi: 10.1182/blood.v97.8.2434.
Hyrenius-Wittsten A, Pilheden M, Sturesson H, Hansson J, Walsh MP, Song G, et al. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2Arearranged leukemia. Nat Commun 2018; 9 (1): 1770. doi: 10.1038/s41467-018-04180-1.
Grundler R, Miething C, Thiede C, Peschel C, Duyster J. FLT3- ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005; 105 (12): 4792-4799. doi: 10.1182/ blood-2004-11-4430.
Arreba-Tutusaus P, Mack TS, Bullinger L, Schnöder TM, Polanetzki A, Weinert S, et al. Impact of FLT3-ITD location on sensitivity to TKI-therapy in vitro and in vivo. Leukemia 2016; 30 (5): 1220-1225. doi: 10.1038/leu.2015.292.
Reindl C, Bagrintseva K, Vempati S, Schnittger S, Ellwart JW, Wenig K, et al. Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML. Blood 2006; 107 (9): 3700-3707. doi: 10.1182/ blood-2005-06-2596.
Esnault C, Rahmé R, Rice KL, Berthier C, Gaillard C, Quentin S, et al. FLT3-ITD impedes retinoic acid, but not arsenic, responses in murine acute promyelocyticleukemias. Blood 2019; 133 (13): 1495-1506. doi: 10.1182/ blood-2018-07-866095.
Okabe A, Guirales F, Zhao D, Tirado CA. FLT3 Gene involvement in B-cell acute lymphoblastic leukemia (B-ALL). J Assoc Genet Technol 2021; 47 (1): 6-14.
Vu HA, Xinh PT, Masuda M, Motoji T, Toyoda A, Sakaki Y, et al. FLT3 is fused to ETV6 in a myeloproliferative disorder with hypereosinophilia and a t(12;13)(p13;q12) translocation. Leukemia 2006; 20 (8): 1414-1421. doi: 10.1038/ sj.leu.2404266.
Zhang H, Paliga A, Hobbs E, Moore S, Olson S, Long N, et al. Two myeloid leukemia cases with rare FLT3 fusions. Cold Spring Harb Mol Case Stud 2018; 4 (6): a003079. doi: 10.1101/mcs.a003079.
Troadec E, Dobbelstein S, Bertrand P, Faumont N, Trimoreau F, Touati M, et al. A novel t(3;13)(q13;q12) translocation fusing FLT3 with GOLGB1: toward myeloid/lymphoid neoplasms with eosinophilia and rearrangement of FLT3? Leukemia 2017; 31 (2): 514-517. doi: 10.1038/leu.2016.304.
Jawhar M, Naumann N, Knut M, Score J, Ghazzawi M, Schneider B, et al. Cytogenetically cryptic ZMYM2-FLT3 and DIAPH1-PDGFRB gene fusions in myeloid neoplasms with eosinophilia. Leukemia 2017; 31 (10): 2271-2273. doi: 10.1038/leu.2017.240.
Zheng XX, Zhang J, Zhang Y, Zhang M, Liu C, Liu X, Yin J, et al. FLT3 pathway is a potential therapeutic target for PRC2-mutated T-cell acute lymphoblastic leukemia. Blood 2018; 132 (23): 2520-2524. doi: 10.1182/ blood-2018-04-845628.
Kleaveland B, Shi CY, Stefano J, Bartel DP. A Network of Noncoding regulatory RNAs acts in the mammalian brain. Cell 2018; 174 (2): 350-362.e17. doi: 10.1016/j. cell.2018.05.022.
Sun YM, Wang WT, Zeng ZC, Chen TQ, Han C, Pan Q, et al. circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood 2019; 134 (18): 1533-1546. doi: 10.1182/ blood.2019000802.
Wu N, Yuan Z, Du KY, Fang L, Lyu J, Zhang C, et al. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ 2019; 26 (12): 2758- 2773. doi: 10.1038/s41418-019-0337-2.
Rivat C, Sar C, Mechaly I, Leyris JP, Diouloufet L, Sonrier C, et al. Inhibition of neuronal FLT3 receptor tyrosine kinase alleviates peripheral neuropathic pain in mice. Nat Commun 2018; 9 (1): 1042. doi: 10.1038/s41467-018-03496-2.
Rücker FG, Du L, Luck TJ, Benner A, Krzykalla J, Gathmann I, et al. Molecular landscape and prognostic impact of FLT3- ITD insertion site in acute myeloid leukemia: RATIFY study results. Leukemia 2021. doi: 10.1038/s41375-021-01323-0. Epub ahead of print.
Liu SB, Qiu QC, Bao XB, Ma X, Li HZ, Liu YJ, et al. Pattern and prognostic value of FLT3-ITD mutations in Chinese de novo adult acute myeloid leukemia. Cancer Sci 2018;109(12):3981-3992. doi: 10.1111/cas.13835.
Blätte TJ, Schmalbrock LK, Skambraks S, Lux S, Cocciardi S, Dolnik A, et al. GetITD for FLT3-ITD-based MRD monitoring in AML. Leukemia 2019;33(10):2535-2539. doi: 10.1038/ s41375-019-0483-z.
Angelini DF, Ottone T, Guerrera G, Lavorgna S, Cittadini M, Buccisano F, et al. A leukemia-associated CD34/ CD123/CD25/CD99+ immunophenotype identifies FLT3- mutated clones in acute myeloid leukemia. Clin Cancer Res 2015; 21 (17): 3977-3985. doi: 10.1158/1078-0432. CCR-14-3186.
Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150 (2): 264-278. doi: 10.1016/j. cell.2012.06.023.
Döhner K, Thiede C, Jahn N, Panina E, Gambietz A, Larson RA, et al. Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood 2020; 135 (5): 371-380. doi: 10.1182/blood.2019002697.
Cocciardi S, Dolnik A, Kapp-Schwoerer S, Rücker FG, Lux S, Blätte TJ, et al. Clonal evolution patterns in acute myeloid leukemia with NPM1 mutation. Nat Commun 2019; 10 (1): 2031. doi: 10.1038/s41467-019-09745-2.
Zhao J, Song Y, Liu D. Gilteritinib: a novel FLT3 inhibitor for acute myeloid leukemia. Biomark Res 2019; 7: 19. doi: 10.1186/s40364-019-0170-2. Erratum in: Biomark Res. 2019; 7: 21.
McMahon CM, Ferng T, Canaani J, Wang ES, Morrissette JJD, Eastburn DJ, et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. Cancer Discov 2019; 9 (8): 1050-1063. doi: 10.1158/2159-8290.CD-18-1453.