2002, Number 3
<< Back Next >>
Rev Endocrinol Nutr 2002; 10 (3)
Role of the leptin in obesity development
Villaseñor A
Language: Spanish
References: 35
Page: 135-139
PDF size: 64.84 Kb.
ABSTRACT
Leptin is a 167 amminoacid protein synthesized and secreted by adipocytes which provides a feedback signal from adipose tissue to receptors in the hypothalamus. Visceral adipocytes appear to produce less leptin than their subcutaneous counterpart. Leptin traverses the blood-brain barrier to inhibit the synthesis of neuropeptide Y with powerful stimulatory effects on appetite. Also inhibits other orexigenic neuropeptides. High leptin levels, indicative of an excessive adipose tissue mass, also lead to increased thermogenesis (neuropeptide Y, also inhibits the activity of thermogenic brown adipose tissue in the rat). Concomitantly, neuropeptide Y administration increases the activity of the hypothalamus-pituitary-adrenal axis, with resulting hypercortisolemia and increased susceptibility to stressful situations. These effects serve to limit further weight gain. Animal models in which leptin (ob/ob mouse) or its hypothalamic receptor (db/db mouse, fa/fa rat) are absent are associated with obesity and insulin resistance. Circulating leptin concentrations are elevated in most obese humans implying cellular resistance rather than deficiency. Plasma leptin concentrations correlate with hyperinsulinemia independently of body mass index.
REFERENCES
Pi-Suyer FX. Medical hazards of obesity. Ann Int Med 1993; 119: 655-660.
Maddox GL, Liederman V. Overweight as a social disability with medical implications. J Med Educ 1969; 44: 214-220.
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-432.
Stunkard A, Coll M, Lundquist S, Meyers A. Obesity and eating style. Arch Gen Psych 1980; 37: 1127-1129.
Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J. Identification and expression cloning of a leptin receptor OB-R. Cell 1995; 83: 1263-1271.
Haldas JL, Gajiwala Ks, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269: 543-546.
Campfield LA, Smith FJ, Burn P. The OB protein (leptin) pathway-A link between adipose tissue mass and central neural networks. Horm Metab Res 1996; 28: 619-632.
Bouchard C. Genetics of obesity: an update of molecular markers. Int J Obes 1995; 19: S10-S13.
Perusse L, Chagnon YC, Weisnagel J, Bouchard C. The human obesity gene map: the 1998 update. Obes Res 1999; 7: 111- 129.
Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzaden JG, Lee JI, Friedman JM. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996; 379: 632-635.
Schwartz MW, Seely RT, Campfield LA, Burn P, Baskin DG. Identification of targets of leptin action in rat hypothalamus. J Clin Invest 1996; 98: 1101-1106.
Hakkansson ML, Meister B. Transcription factor STAT-3 in leptin target neurons of the rat hypothalamus. Neuroendocrinology 1998; 68: 420-427.
Cusin I, Zakrewska KE, Boss O, Muzzin P, Giaco bino JP, Riquier D, Jeanrenaud B, Rohner-Jeanrenaud F. Chronic central leptin infission enhances insulin-stimulated glucose metabolism and favors the expression of uncoupling proteins. Diabetes 1998; 47: 1014-1019.
Hu Y, Bloomquist BT, Cornfield LJ, De Carr LB, Flores-Riveros JR, Friedman L, Jiang P, Lewis-Higgings L, Sadlowski Y, Scheafer J, Velázquez N, Mc Caleb ML. Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior. J Biol Chem 1996; 271: 26315-26319.
Zarjevski N, Cusin I, Vettor R, Rohner-Jeanrenaud F, Jeanrenaud B. Chronic intracerebroventricular neuropeptide Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 1993; 133: 1753-1758.
Vettor R, Zarjevski N, Cusin I, Rohner-Jeanrenaud F, Jeanrenaud B. Induction and reversibility of an obesity syndrome by intracerebroventricular neuropeptide Y administration to normal rats. Diabetologia 1994; 37: 1202-1208.
Sainsbury A, Rohner-Jeanrenaud F, Cusin I, Zakrzewska KE, Halban PA, Gaillard RC, Jeanrenaud B. Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamus-pituitary-adrenal axis, and vagal mediation of hyperinsulinemia. Diabetologia 1997; 40: 1249-1277.
Billington CJ, Briggs JE, Grace M, Levine AS. Effects of intracebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol 1991; 260: R321-327.
Bryan GA. Peptides affect the intake of specific nutrients and the sympathetic nervous system. Am J Clin Nutr 1992; 55(Suppl 1): 265s-271s.
Niswender KD, Stearns WH, Schwartz MW. Evidence of IRS–P13K signaling in the hypothalamic response to insulin and leptin. Diabetes 2001; 50(Suppl 2): Abstract 53-OR.
Carvalheira JB, Siloto RMP, Ignacchitti I. Insulin modulates leptin induced STAT 3 activation in rat hypothalamus. Diabetes 2001; 50(Suppl 2): Abstract 54-OR.
Cnop M, Landchild MJ, Vidal J, Knowles NG, Wang F, Hull RL, Boyko EJ, Retzalff BM, Knopp RH, Kahn SE, Carr DR, Havel PJ, Walden CE. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations. Diabetes 2002; 51: 1005-1015.
Skofitsch G, Jacobowitz DM, Zamir N. Immunohistochemical localization of a melanin concentrating hormone-like peptide in the rat brain. Brain Res Bull 1985; 15: 635-649.
Sahu A. Leptin decreases food intake induced by melanin concentrating hormone (MCH) galanin (GAL) and neuropeptide Y (NPY) in the rat. Endocrinology 1998; 139: 4739-4742.
Cambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu WS, Park J, Ellis C, Ganguly S, Konchar S, Cluderay J, Leslie R, Wilson S, Sarau HM. Melanin concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 1999; 400: 261-265.
Hakansson M, De Lecea, Sutcliffe JG, Yanagisawa M, Meister B. Leptin receptor and STAT 3-immunoreactivities in Hypocretin/Orexin neurons of the lateral hypothalamus. J Neuroendrocrinol 1999; 11: 653-663.
Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998; 393: 72-76.
Nishiyama M, Makinos, Asaba K, Hashimoto K. Leptin effects on the expression of type 2 CRH receptor mRNA in the ventromedial hypothalamus in the rat. Neuroendocrinology 1999; 11: 307-314.
Tritos NA, Vicent D, Gillete J, Ludwig DS, Flier ES, Maratos-Flier E. Functional interactions between melanin concentrating hormone, neuropeptide Y, and anorectic neuropeptides in the rat hypothalamus. Diabetes 1998; 47: 1687-1692.
Seely RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Baskin DG, Schwartz MW. Melanocortin receptors in leptin effects. Nature 1997; 390: 349.
Rossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D, Abusnana S, Goldstone AP, Russell SH, Stanley SA, Smith DM, Yagaloff K, Gathei MA, Bloom SR. A C-terminal fragment of agouti related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 1998; 139: 4428-4431.
Wilson BD, Bagnol D, Kaelin CB, Ollmann MM, Gantz I, Watson SJ, Barsh GS. Physiological and anatomical circuitry between agouti-related protein and leptin signaling. Endocrinology 1999; 140: 2387-2397.
Wilson BD, Ollmann MN, Barsh GS. The role of agouti related protein in regulating body weight. Mol Med Today 1999; 5: 250-256.
Kolaczynski JW, Nyce MR, Considine RV, Boden G, Nolan JJ, Henry R. Acute and chronic effects of insulin on leptin production in humans: studies in vivo and in vitro. Diabetes 1996; 45: 699-701.
Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E. Role of leptin in the neuroendocrine response to fasting. Nature 1996; 382: 250-252.