2001, Number 5
<< Back Next >>
Rev Fac Med UNAM 2001; 44 (5)
Energetic and steroidogenic metabolism at the human placenta
Martínez F, Espinosa GMT, García C, Maldonado G, Milán R, Uribe A, Flores HO
Language: Spanish
References: 48
Page: 201-206
PDF size: 47.70 Kb.
ABSTRACT
The syncytiotrophoblast cells get their ATP from anaerobic glycolysis. Although human placental mitochondria synthesizes ATP, this ATP is not used at the cytoplasm functions. Our data showed the presence of an ATP-diphosphohydrolase (apyrase) tightly bound to placental mitochondria, which is inhibited by vanadate and FSBA. In this paper, we propose that apyrase and the ATP synthesized by mitochondria from syncytiotrophoblast cells are closely related to cholesterol transport, which is necessary for progesterone synthesis. Also, the apyrase activity and ATP are associated to the mitochondrial attachment points.
REFERENCES
Martínez F, Strauss JF III. Regulation of mitochondrial cholesterol metabolism. En: Subcellular Biochemistry, Cap. 8, Vol. 28: Cholesterol, its Metabolism and Functions in Biology and Medicine. Plenum Press, N.Y., USA 1997: 205-234.
Strauss JF III, Martínez F, Kiriakidou M. Placental steroid hormone synthesis: unique features and unanswered questions. Biol Reprod 1996, 54: 303-311.
Ringler GE, Kao LC, Miller WL, Strauss JF III. Effects of 8-bromocAMP on expression of endocrine functions by cultured human trophoblast cells. Regulation of specific mRNAs. Mol Cell Endocrinol 1989, 61: 13-21.
Strauss JF III, Kido S, Sayegh R, Sakuragi N, Gafvels ME. The cAMP signalling system and human trophoblast function. Placenta 1992, 13: 389-403.
Négrié C, Triadou N, Michel O, Bouhnik J, Michel R. Oxidative phosphorylation reactions and cholesterol hydroxylation mechanisms in human term placental mitochondria. J Steroid Biochem 1979, 11: 1135-40.
Simpson ER, Miller DA. Cholesterol side-chain cleavage, cytochrome P450, and iron-sulfur protein in human placental mitochondria. Arch Biochem Biophys 1978, 190: 800-808.
Meigs RA, Ryan KJ. Cytochrome P-450 and steroid biosynthesis in the human placenta. Biochim Biophys Acta 1968, 165: 476-82.
Cammer W, Estabrook RW. Spectrophotometric studies of the pigments of adrenal cortex mitochondria. Arch Biochem Biophys 1967, 122: 735-747.
Harding BW, Nelson DH. Electron carriers of the bovine adrenal cortical respiratory chain and hydroxylating pathways. J Biol Chem 1966, 241: 2212-2219.
Hanukoglu I, Hanukoglu Z. Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum. Implications for membrane organization and gene regulation. Eur J Biochem 1986, 157: 27-31.
Jefcoate CR, Simpson ER, Boyd GS, Brownie AC, Orme-Johnson WH (1973) The detection of different states of the P-450 cytochromes in adrenal mitochondria: changes induced by ACTH. Ann NY Acad Sci USA 1987; 212: 243-61.
Ingermann RL. Control of placental glucose transfer. Placenta, 8, 557-571.
Johnson LW, Smith CH. Glucose transport across the basal plasma membrane of human placental syncytiotrophoblast. Biochimica et Biophysica Acta 1985; 815: 44-50.
Hanguel S, Dezmaizieres V, Challier JC. Glucose uptake, utilization, and transfer by the human placenta as functions of maternal glucose concentration. Pediatric Research 1986, 20: 269-273. Schneider AB, Challier JC, Danceis J. Transfer and metabolism of glucose and lactate in the human placenta studied by a perfusion system in vitro. Placenta 1981; Supp 2: 129-138.
Ville CA. The metabolism of human placenta in vitro. J Biol Chem 1953; 205: 113-123.
Barash V, Reskin A, Shafrir E, Waddell ID, Burchell A. Kinetic and immunologic evidence for the absence of glucose-6-phosphatase in early human chorionic villi and term human placenta. Biochim Biophys Acta 1991; 1073: 161-167.
Matalon R, Michals K. Gluconeogenic enzymes in the human placenta.J Inher Metab Dis 1984; 7: 179-181.
Prendergast CH, Parker KH, Gray R, Venkatesan S, Bannister P, Castro-Soares J, Murphy KW, Beard RW, Regan L, Robinson S Steer P, Halliday D, Johnston DG. Glucose production by the human placenta in vivo. Placenta 1999; 20: 591-598.
Matsubara S, Takizawa T, Sato I. Glucose-6-phosphatase is present in normal and pre-eclamptic placental trophoblasts: ultrastructural enzyme-histochemical evidence. Placenta 1999; 20: 81-85.
Battaglia FC. An update of fetal and placental metabolism: carbohydrate and amino acids. Biology of the Neonate 1989; 55: 347-354.
Piquard F, Schaefer A, Dellenbach P, Haberey P. Lactate movements in the human placenta in situ. Biology of the Neonate 1990; 58: 61-68.
Desoye G, Shafrir E. Placental metabolisms and its regulation in health and diabetes. Mol Aspects Med 1994; 15: 505-682.
Shelley HJ. Transfer of carbohydrates. In: Placental transfer, GVP Chamberlain, AW Wilkinson (eds), Tunbridge Wells, Pitman Medical 1979: 118-1412.
Moe AJ, Farmer DR, Nelson DM, Smith CH. Pentose phosphate pathway in cellular trophoblast from full-term human placentas. Am J Physiol 1991, 261 CellPhysiol 30: C1042-C1047.
Carter AM. Placental oxygen consumption. Part I: in vivo studies-a review. Placenta 2000, 21 Suppl A: S31-37.
Coleman RA. Placental metabolism and transport of lipids. Federation Proceedings 1986; 45: 2519-2523.
Coleman RA, Haynes EB. Synthesis and release of fatty acids by human trophoblast cells in culture. J Lipid Res 1987; 28: 1335-1341.
Freinkel N. Effects of the conceptus on maternal metabolism duringpregnancy. In: On the nature and treatment of diabetes. 1st edn. BS Leibel, GA Wrenshall (eds), Amsterdam, Exerpta Medica Foundation 1965: 679-691.
Young MPA, Schneider H. Metabolic integrity of the isolated perfused lobule of human placenta. Placenta 1984; 5: 95-104.
Martínez F, Chávez E, Echegoyen S. Decreased exchange of adenine nucleotides in human placental mitochondria. Int J Biochem 1987; 19: 275-279.
Bloxam DL, Bobinski PM. Energy metabolism and glycolysis in the human placenta during ischaemia and in normal labour. Placenta 1984; 5: 381-94.
Martínez F, Espinosa-García MT, Flores-Herrera O, Pardo JP. Respiratory control induced by ATP in human term placental mitochondria. Placenta 1993; 14: 321-331.
Martínez F, Meaney A, Espinosa-García MT, Pardo JP, Flores-Herrera O. Characterization of the F1F0-ATPase and the thightly-bound atpase activities in submitochondrial particles from human term placenta. Placenta 1996; 17: 345-350.
Flores-Herrera O, Uribe A, Pardo JP, Martínez F. A novel ATP-diphosphohydrolase from human term placental mitochondria. Placenta 1999; 20: 475-484.
Martínez F, Pardo JP, Flores-Herrera O, Espinosa-García MT. The effect of osmolarity on some functions from human term placental mitochondria. Int J Biochem Cell Biol 1995; 27: 795-803.
Navarrete J, Flores-Herrera O, Uribe A, Martínez F. Differences in cholesterol incorporation into mitochondria from hepatoma AS-30D and human term placenta. Placenta 1999; 20: 285-291.
Xu X, Xu T, Robertson DG, Lamberth JD. GTP stimulates pregnenolone generation in isolated rat adrenal mitochondria. J Biol Chem 1989; 264: 17674-17680.
Schroder HJ, Power GG. Engine and radiator: fetal and placental interactions for heat dissipation. Exp Physiol 1997; 82: 403-414.
Ball KT, Gunn TR, Power GG, Asakura H, Gluckman PD. A potential role for adenosine in the inhibition of nonshivering thermogenesis in the fetal sheep. Pediatr Res 1995; 37: 303-309.
Stocco DM. Intramitochondrial cholesterol transfer. Biochim Biophys Acta 2000; 1486: 184-197.
Brdiczka D. Function of the outer mitochondrial compartment in regulation of energy metabolism. Biochim Biophys Acta 1994; 1187: 264-9.
Jensen RE, Kinnally KW. The mitochondrial protein import pathway: are precursors imported through membrane channels? J Bioenerg Biomembr 1997; 29: 3-10.
Duglas MG, Smagula CS, Chen WJ. Mitochondrial import of proteins. In: Intracellular trafficking of proteins. Ed. Steer CJ, Hanover JA, Cambridge University Press, Cambridge 1991: 658-696.
Jefcoate CR, McNamara BC, Artemenko I, Yamazaki T. Regulation of cholesterol movement to mitochondrial cytochrome P450scc in steroid hormone synthesis. J Steroid Biochem Molec Biol 1992; 43: 751-767.
Papadopoulos V. Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: biological role in steroidogenic cell function. Endocr Rev 1993; 14: 222-40.
Culty M, Li H, Boujrad N, Amri H, Vidic B, Bernassau JM, Reversat JL, Papadopoulos V. In vitro studies on the role of the peripheraltype benzodiazepine receptor in steroidogenesis. J Steroid Biochem Mol Biol 1999; 69: 123-30.
Espinosa-García MT, Struss JF III, Martínez F. A trypsin-sensitive protein is required for utilization of exogenous cholesterol for pregnenolone synthesis by placental mitochondria. Placenta 2000; 21: 654-660.
Schneider H, Malek A, Duft R, Bersinger N. Evaluation of an in vitro dual perfusion system for the study of placental proteins: energy metabolism. In: Placenta as a model and a source, O. Genbacev, A. Klopper & R Beaconsfield (eds), Plenum Press, New York, USA 1988: 39-50.