2021, Number 09
<< Back Next >>
Ginecol Obstet Mex 2021; 89 (09)
Comparison of four fetal growth charts in the prediction of adverse perinatal outcomes in a tertiary hospital in Mexico
Mendoza-Carrera CE, Acevedo-Gallegos S, Lumbreras-Márquez M, Gallardo-Gaona JM, Copado-Mendoza DY, Rodriguez-Sibaja MJ
Language: Spanish
References: 29
Page: 704-714
PDF size: 246.09 Kb.
ABSTRACT
Objective: To compare the performance of four fetal growth charts for the prediction
of adverse perinatal outcomes.
Materials and Methods: Retrolective cohort study performed at the Maternal-Fetal
Medicine Department of the National Institute of Perinatology (INPer) of pregnancies
attended between May 2017 to January 2019. Four fetal growth charts (Hadlock,
INTERGROWTH-21st, Fetal Medicine Foundation and Fetal Medicine Foundation
Barcelona) were used for the evaluation of the last obstetric ultrasound of a retrolective
cohort. Performance and relative risk ratios for adverse perinatal outcomes given by the
less than 10th and greater than 90th percentiles of estimated fetal weight according to
each table were analyzed and the adjusted sensitivity of each table for a false-positive
rate of 10% was calculated.
Results: 1053 patients were identified; the median interval between the last ultrasonographic
evaluation and birth was 21 days +/- 12. The median number of weeks of
gestation at birth was 38.2. Estimated fetal weight less than the 10th percentile, according
to all four charts, was associated with an increased risk of composite adverse perinatal
outcome. The association was greatest with the Barcelona Fetal Medicine Foundation
chart (RR 1.69; 95%CI: 1.41, 2.02) and INTERGROWTH-21st (RR 1.59; 95%CI: 1.32,
1.92). Sensitivity in the small for gestational age group for adverse perinatal outcome
had wide variation between the charts (20.5% INTERGROWTH-21st - 32.6% Fetal
Medicine Foundation), given primarily by the difference in false positive rate.
Conclusion: In the study population, the predictive performance of the fetal
growth charts by the Barcelona Fetal Medicine Foundation and INTEGROWTH-21st
was superior.
REFERENCES
Gardosi J, Chang A, Kalyan B, et al. Birth-weight centiles and the risk of serious adverse neonatal outcomes at term. Ultrasound Obstet Gynecol 2018; 7 (3): 159-63. https://doi. org/10.1515/jpm-2017-0176
Chauhan SP, Rice MM, Grobman WA, et al. Neonatal Morbidity of Small- and Large-for-Gestational-Age Neonates Born at Term in Uncomplicated Pregnancies. Obstet Gynecol 2017; 130 (3): 511-19. doi:10.1097/ AOG.0000000000002199
Madden J V., Flatley CJ, Kumar S. Term small-for-gestational- age infants from low-risk women are at significantly greater risk of adverse neonatal outcomes. Am J Obstet Gynecol 2018; 218 (5): 525.e1-525.e9. https://doi. org/10.1016/j.ajog.2018.02.008
Boghossian NS, Geraci M, Edwards EM, Horbar JD. In- Hospital Outcomes in Large for Gestational Age Infants at 22-29 Weeks of Gestation. J Pediatr 2018; 198: 174-80. e13. doi:10.1016/j.jpeds.2018.02.042
Weissmann-Brenner A, Simchen MJ, Zilberberg E, et al. Maternal and neonatal outcomes of large for gestational age pregnancies. Acta Obstet Gynecol Scand 2012; 91 (7): 844-49. doi:10.1111/j.1600-0412.2012.01412.x
Trudell AS, Cahill AG, Tuuli MG, Macones GA, Odibo AO. Risk of stillbirth after 37 weeks in pregnancies complicated by small-for-gestational-age fetuses. Am J Obstet Gynecol 2013; 208 (5): 376.e1-376.e7. doi:10.1016/j.ajog.2013.02.030
Salomon LJ, Alfirevic Z, Da Silva Costa F, et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet Gynecol 2019; 53 (6): 715-23. doi:10.1002/uog.20272
Lindqvist PG, Molin J. Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet Gynecol 2005; 25 (3): 258-64. doi:10.1002/uog.1806
O’Gorman N, Salomon LJ. Fetal biometry to assess the size and growth of the fetus. Best Pract Res Clin Obstet Gynaecol 2018; 49: 3-15. doi:10.1016/j.bpobgyn.2018.02.005
Mayer C, Joseph KS. Fetal growth: A review of terms, concepts and issues relevant to obstetrics. Ultrasound Obstet Gynecol 2013; 41 (2): 136-45. doi:10.1002/uog.11204
Battaglia FC, Lubchenco LO. A practical classification of newborn infants by weight and gestational age. J Pediatr 1967; 71 (2): 159-63. doi:10.1016/s0022-3476(67)80066-0
Ioannou C, Talbot K, Ohuma E, et al. Systematic review of methodology used in ultrasound studies aimed at creating charts of fetal size. BJOG An Int J Obstet Gynaecol 2012; 119 (12): 1425-39. doi:10.1111/j.1471-0528.2012.03451.x
Kiserud T, Piaggio G, Carroli G, et al. The World Health Organization Fetal Growth Charts : A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight. PLOS 2017; 1-36. doi:10.1371/ journal.pmed.1002220
Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology 1991; 181 (1): 129-33. doi:10.1148/radiology. 181.1.1887021
Nicolaides KH, Wright D, Syngelaki A, Wright A, Akolekar R. Fetal Medicine Foundation fetal and neonatal population weight charts. Ultrasound Obstet Gynecol 2018; 52 (1): 44-51. doi:10.1002/uog.19073
Figueras F, Meler E, Iraola A, et al. Customized birthweight standards for a Spanish population. Eur J Obstet Gynecol Reprod Biol 2008; 136 (1): 20-24. doi:10.1016/j.ejogrb. 2006.12.015
Stirnemann J, Villar J, Salomon LJ, et al. International estimated fetal weight standards of the INTERGROWTH-21st Project. Ultrasound Obstet Gynecol 2017; 49 (4): 478-86. doi:10.1002/uog.17347
Robinson HP, Fleming JE. A critical evaluation of sonar "crown-rump length" measurements. Br J Obstet Gynaecol 1975; 82 (9): 702-10. http://www.ncbi. nlm.nih.gov/pubmed/1182090.
Hadlock FP, Deter RL, Harrist RB, Park SK. Fetal biparietal diameter: A critical re-evaluation of the relation to menstrual age by means of real-time ultrasound. J Ultrasound Med 1982; 1 (3): 97-104. doi:10.7863/jum.1982.1.3.97
Mul T, Mongelli M, Gardosi J. A comparative analysis of second-trimester ultrasound dating formulae in pregnancies conceived with artificial reproductive techniques. Ultrasound Obstet Gynecol 1996; 8 (6): 397-402. doi:10.1046/j.1469-0705.1997.08060397.x
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 2008; 61 (4): 344-49. doi:10.1016/j.jclinepi. 2007.11.008
Hadlock FP, Harrist RB, Carpenter RJ, Deter RL, Park SK. Sonographic of Fetal Weight. Radiology 1984; 150: 535-40.
Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements-A prospective study. Am J Obstet Gynecol 1985; 151 (3): 333-37. doi:10.1016/0002- 9378(85)90298-4
Apgar V. A proposal for a new method of evaluation of the newborn infant. Anesth Analg 2015; 120 (5):1056-59. doi:10.1213/ANE.0b013e31829bdc5c
Adamkin DH. Metabolic Screening and Postnatal Glucose Homeostasis in the Newborn. Pediatr Clin North Am 2015; 62 (2): 385-409. http://dx.doi.org/10.1016/j.pci.2014.11.004
Norma Oficial Mexicana NOM-007-SSA2-2016, Para la atención de la mujer durante el embarazo, parto y puerperio, y de la persona recién nacida. 2016:1-67.
27. Finken MJJ, Van Der Steen M, Smeets CCJ, et al. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39 (6): 851-894. https://doi.org/10.1210/ er.2018-00083
Sharma D, Farahbakhsh N, Shastri S, Sharma P. Intrauterine growth restriction–part 2. J Matern Neonatal Med 2016; 29 (24): 4037-48. doi:10.3109/14767058.2016.1154525
Pallotto EK, Kilbride HW. Perinatal outcome and later implications of intrauterine growth restriction. Clin Obstet Gynecol 2006; 49 (2): 257-69. doi: 10.1097/00003081- 200606000-00008