2020, Number 4
<< Back Next >>
Rev Cubana Invest Bioméd 2020; 39 (4)
Characterization, classification and uses of lipase enzymes in industrial production
Salazar CLA, Hinojoza GMM, Acosta GMP, Escobar TAF, Scrich VAJ
Language: Spanish
References: 42
Page: 1-16
PDF size: 276.33 Kb.
ABSTRACT
Introduction:
Biochemistry has experienced great development as a particular medical science. Lipase enzymes are obtained from living organisms which are abundant in nature, and have been used in the manufacture of foods, soap, detergents, oils and other industrial products. New classifications are now available of lipase enzymes, and they have been subdivided into groups and subgroups. An interest is also noticed in using them for biodiesel production and in biotechnology and medical genetics.
Objective:
Collect the main updated theoretical considerations about the characterization, classification and uses of lipase enzymes.
Method:
The search for and analysis of the information extended from 1 September to 23 December 2019, for a total 50 papers published in the databases PubMed, Hinari, SciELO and Medline, using the search engine and reference manager EndNote. Forty-two citations were selected for the review, 38 of which were from the last five years.
Conclusions:
Lipase enzymes are proteins that catalyze biological processes. They are active in a wide range of substrates, performing synthesis reactions, hydrolysis or group exchanges. They display a variety of catalytic activities, are less costly and less contaminating, are obtained in large quantities and are produced in a regular manner. They are stable and their production process is more feasible and safer. They are characterized by their ability to catalyze reactions of acidolysis, alcoholysis, aminolysis, esterification, interesterification and transesterification, among other characteristics.
REFERENCES
Fjerbaek L, Christensen KV, Norddahl B. A review of the current state of biodiesel production using enzyme tictransesterification. J Bio and Bioeng. 2009 acceso: 23/01/2020; 102(5):298-315. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19215031
ASTM International. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. West Conshohocken. 2020 acceso: 23/01/2020; 32(12):14-31. Disponible en: Disponible en: https://www.astm.org/Standards/D6751.htm
Meher L, Vidyasagar D, Naik S. Technical aspects of biodiesel production by transesterification. Renew and Sust Ener Reviews. 2016;10(42):248-68.
Lukovi N, Kneževi Z, Bezbradica D. Biodiesel Fuel Production by Enzymatic Transesterification of Oils: Recent Trends, Challenges and Future, Perspectives and Alternative. Fuel. 2015;36(4):10-23.
Bonet K. Producción enzimática de biodiesel a partir de aceites de desecho: una nueva alternativa Tesis. Barcelona: Departamento de Ingeniería Química, Biológica y Ambiental, UAB Barcelona; 2016. [acceso: 23/01/2020]. Disponible en: Disponible en: https://www.uab.cat/web/detalle-noticia/produccion-enzimatica-de-biodiesel-a-partir-de-aceites-de-desecho-una-nueva-alternativa-1345680342040.html?noticiaid=1345697388111
Mclean DD, Kates M. Biodiesel production from waste cooking oil: Process design and technological assessment. Rev. Bioresource Technology. 2018;89(62):1-16.
Malcata FX. Microalgae and biofuels: a promising partnership? Rev. Trends in Biotechnology. 2019;29(11):542-654.
Balat M, Balat H. A critical review of biodiesel as a vehicular fuel. J Ener Conver and Manag. 2018;49(10):27-41.
Lukovi N, Kneževi Z, Bezbradica D. Lipase production by Yarrowia lipolytica using olive oil processing wastes as substrates. J. Serb. Chem. Soc. 2013;78(6):781-94.
Ma F, Hanna MA. Biodiesel production: a review 1. J Bio Tech. 2019;70(15):15-40.
Rodríguez Sauceda EN. Uso de agentes antimicrobianos naturales en la conservación de frutas y hortalizas. Rev Soc Cult y Des Sust. Ra Ximhai. 2016;7(1):153-70.
Aravindan R. Lipase applications in food industry. Indian Journal of Biotechnology. 2017[acceso: 22/10/2020];6(4):141-58.
Villeneuve P. Lipases in lipophilization reactions. Rev. Biotech. Adv. 2017 acceso: 23/10/2020; 25(38):100-36. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/17681737/
Beuchat LR. Control of foodborne pathogens and spoilage microorganisms by naturally occurring antimicrobials. En: Wilson CL, Droby S. Editors. Microbial Food Contamination. United States of America: CRC Press; 2001
Bornscheuer UT, Kazlauskas RJ. Hydrolase in organic synthesis: Regioselective biotransformations. Rev. Wiey-VCH, Weinheim. 2002 acceso: 23/01/2020;34(2). Disponible en: Disponible en: https://experts.umn.edu/en/publications/hydrolases-in-organic-synthesis-regio-and-stereoselective-biotran
Akoh C, Lee C, Liaw C, Huang H, Shaw F. GDSL family of serine esterase/lipase. Rev. Program Lipids. 2014;43(13):534-52.
Burt SA, Reinders RD. Antibacterial activity of selected plantes sential oils against Escherichia coli O157:H7. Rev. Lett Applied Microbiology. 2003;36(39):157-62.
Adamczak M, Bornscheuer UT, Bednarski W. The application of biotechnological methods for the synthesis of biodiesel. European Journal of Lipid Science and Technology. 2015;68(41):1-6.
Norsker NH, Barbosa MH, Vermuë Wijffels RH. Microalgal production a close looks at the economics. Rev. Biotechnology Advances. 2015;29(1):24-7.
United States of America Enviromental Protection Agency. Environmental Laws Applicable to Construction and Operation of Biodiesel Production Facilities. 2018;(2):342-4.
Calvo Garrido L, Ladero M. Obtención del biodiesel por vía enzimática a partir de un aceite modelo de microalgas en medios no convencionales. J Arch of Bioch and Bioph. 2017;42(8):72-3.
Olempska-Beer Z, Merker R, Ditto M, Dinovi M. Food processing enzymes from recombinant microorganisms. 2016;45(12):144-58.
Hoon KC, Lee JH, Kim SW, Kang JW. Lipase-catalysed esterification of(S)-Naproxen ethyl ester in supercritical carbon dioxide. J Micro Biotech. 2019;19(8):16-52.
Ro HS, Hong HP, Kho BH, Kim S, Chung BH. Genome wide cloning and characterization of microbial esterases. J. FEMS. Microbiol. Lett. 2014;233(97):35-55.
Du W, Li W, Sun T, Chen X, Liu D. Perspectives for biotechnological production of biodiesel and impacts. J Applied Microbiology Biotechnology. 2018;79(1):331-57.
Arpigny L, Jaeger E. Bacterial lipolytic enzymes: classification and properties. J Biochemist. 1999;343(45):177-83.
Jaeger KE, Reetz MT. Microbial lipases form versatile tools for biotechnology. J Trends. Biotechnology. 2012;16(31):396-403.
Fojan P, Johnson PH, Petersen TN, Petersen SB. What distinguishes an esterase from a lipase: A novel structural approach. J Biochimie. 2017;82(61):33-41.
Park Y, Choi SY, Lee HB. A carboxylesterase from the thermoacidophilic archaeon Sulfolobus solfataricus P1; purification, characterization, and expression. Rev Appl Environ. Microbiology. 2016;43(17):56-89.
Verger Adamczak M, Bornscheuer UT, Bednarski W. Production, purification, characterization, and applications of lipases. Rev. Biotech. 2015;19(91):627-62.
Chahinian H, Ali Y, Abousalham A, Petry S, Mandrich L, Manco G, Canaan S, Sarda L. Substrate specificity and kinetic properties of enzyme belonging to the hormone sensitive lipase family: Comparison with nonlipolytic and lipolytic carboxylesterases. J Biochim Biophys. Acta. 2015;17(38):29-36.
Montoro García S, Martínez-Martínez I, Navarro Fernández J, Takami H, García-Carmona F, Sánchez-Ferrer A. Characterization of a novel thermostable carboxylesterase from Geobacillus kaustophilus HTA426 shows the existence of a new carboxylesterase family. J Bacteriology. 2019;191(30):76-85.
Navarro González I, Periago MJ. Enzimas lipolíticas bacterianas: propiedades, clasificación, estructura, aplicaciones tecnológicas y aspectos legales. Rev. Anales Vet. 2012;28:34-37. DOI: 10.6018/j/188711
Cruz H, Pérez C, Wellington E, Castro C, Servin-González L. Sequence of the Streptomyces albus G lipase-encoding gene reveals the presence of a prokaryotic lipase family. J Gen. 1994;4(41):421-51.
Rao L, Xue Y, Zhou C, Tao S, Li G, Lu J.R, Ma Y. A themostable esterase from Thermoanaerobacter ten- gcongensis opening up a new family of bacterial lipolytic. J Arch of Biochemist and Biophysics. 2017;18(14): 95-102.
Kim EY, Oh KH, Lee MH, Kang CH, Oh TK, Yoon JH. Novel cold adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. J Appl Environ Microbiol. 2019;75(59):257-60.
Prim N, Bofil C, Pastor FIJ, Díaz P. Esterase EstA6 from Pseudomonas sp.CR-611 is a novel member in the utmost conserved cluster of family VI bacterial lipolytic enzymes. J Biochimie. 2019;8(4):857-67.
Handrick R, Reinhardt S, Focarete ML, Scandola M, Adamus G, Kowalczuk M, Jendrossek D. A new type of thermoalkalophilic hydrolase of Paucimonas lemoignei with high specificity for amorphous polyesters of short chain-length hydroxyalkanoic acid. J Biol. Chem. 2001;76(36):215-24.
Levisson M, Oost JV, Kengen SW. Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritime. J FEBS. 2017;7(47):32-42.
Lee MH, Lee CH, Oh TK, Song JK, Yoon JH. Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. J Appl. Environ. Microbio. 2016;22(37):406-9.
Liu P, Wang YF, Ewis E, Abdelal A, Lu CD, Harrison R, Weber I. Covalente reaction intermediate revealed in crystal structure of the Geobacillus stearothermophilus carboxylesterase Est30. J Mol Bio. 2014;42(29):551-61.
Stock J, Goloshchapov A, Song C, Wheelock C, Derbel M, Morisseau C, Hammock B. Investigation of the role of a second conserved serine in carboxylesterases via site-directed mutagenesis. Rev. Archives of Biochemist and Biophysics. 2014;30(251):247-55.