2021, Number 2
<< Back Next >>
Sal Jal 2021; 8 (2)
La hipoxia y la infl amación en el desarrollo de las enfermedades crónico-degenerativas
Mazorra-Carrillo JL, Barbero-Becerra VJ, Esquivel-Solís H
Language: Spanish
References: 64
Page: 104-112
PDF size: 290.98 Kb.
ABSTRACT
Chronic diseases are the leading causes of disability
and death worldwide. These kinds of diseases are
accompanied by persistent inflammation and hypoxia.
Hypoxia consists in a decrease in intracellular
oxygen that causes the activation of the hypoxiainducible
factor HIF-1α and in cellular nucleus
it induces the expression of genes involved in
angiogenesis, erythropoiesis, metabolism, survival and
inflammation. This reciprocal relationship between
hypoxia and inflammation leads to tissue dysfunction
and degeneration, characteristic of chronic diseases.
In this review we highlight the relevant aspects of the
molecular changes induced by hypoxia and HIF-1α in
gene expression and their involvement in the chronic
degenerative diseases pathogenesis.
REFERENCES
Nature S. 2020 Springer Nature Limited.
Pahwa R, Jialal I. Chronic infl ammation. 2019.
Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front Immunol . 2018;9:2379. https://www.frontiersin.org/article/10.3389/ fi mmu.2018.02379.
Żeromski J, Kaczmarek M, Boruczkowski M, Kierepa A, Kowala-Piaskowska A, Mozer-Lisewska I. Signifi cance and Role of Pattern Recognition Receptors in Malignancy. Arch Immunol Th er Exp (Warsz). 2019;67(3):133-141. doi:10.1007/s00005- 019-00540-x.
Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in infl ammation. Signal Transduct Target Th er. 2017;2(1):17023. doi:10.1038/ sigtrans.2017.23.
Sun S-C. Th e non-canonical NF-κB pathway in immunity and infl ammation. Nat Rev Immunol. 2017;17(9):545-558. doi:10.1038/nri.2017.52.
Naik R. Exam Preparatory Manual for Undergraduates: General & Systemic Pathology. 2015.
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Infl ammation: What Controls Its Onset?. Front Immunol. 2016;7:160. https://www.frontiersin.org/ article/10.3389/fi mmu.2016.00160.
Organization WH. Th e top 10 causes of death World Health Organization. 2017.
Biddlestone J, Bandarra D, Rocha S. Th e role of hypoxia in infl ammatory disease (review). Int J Mol Med. 2015;35(4):859- 869. doi:10.3892/ijmm.2015.2079.
Barrett KE, Barman SM, Brooks HL, Yuan JX-J. Ganong’s Review of Medical Physiology. McGraw-Hill Education; 2019.
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol. 2013;3(2):849-915.
Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology. John Wiley & Sons; 2018.
Salehi E, Eft ekhari R, Oraei M, Gharib A, Bidad K. MicroRNAs in rheumatoid arthritis. Clin Rheumatol. 2015;34(4):615-628.
Jeff ery RC. Clinical features of rheumatoid arthritis. Medicine (Baltimore). 2010;38(4):167-171.
Özenci V, Kouwenhoven M, Link H. Cytokines in multiple sclerosis: methodological aspects and pathogenic implications. Mult Scler J. 2002;8(5):396-404.
Imitola J, Chitnis T, Khoury SJ. Cytokines in multiple sclerosis: from bench to bedside. Pharmacol Th er. 2005;106(2):163-177.
Hasheminia SJ, Tolouei S, ZARKESH ESH, et al. Cytokine gene expression in newly diagnosed multiple sclerosis patients. 2015.
Pellicoro A, Ramachandran P, Iredale JP, Fallowfi eld J a. Liver fi brosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14(3):181-194. doi:10.1038/ nri3623.
Czaja AJ. Hepatic infl ammation and progressive liver fi brosis in chronic liver disease. World J Gastroenterol. 2014;20(10):2515- 2532. doi:10.3748/wjg.v20.i10.2515.
Ortega LM, Fornoni A. Role of cytokines in the pathogenesis of acute and chronic kidney disease, glomerulonephritis, and end-stage kidney disease. Int J Interf Cytokine Mediat Res. 2010;2(1):49-62.
Levey AS, Coresh J. Chronic kidney disease Lancet (Vol. 379, pp. 165-180). 2012.
Chung KF. Cytokines in chronic obstructive pulmonary disease. Eur Respir J. 2001;18(34 suppl):50s - 59s.
Eickmeier O, Huebner M, Herrmann E, et al. Sputum biomarker profi les in cystic fi brosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function. Cytokine. 2010;50(2):152-157.
Calverley PMA, Georgopoulos D. Chronic obstructive pulmonary disease: symptoms and signs. Eur Respir Monogr. 2006;38:7.
Davies JC, Alton EWFW, Bush A. Cystic fi brosis. BMJ. 2007;335(7632):1255 LP - 1259. doi:10.1136/bmj.39391.713229.AD.
Ramachandran A. Know the signs and symptoms of diabetes. Indian J Med Res. 2014;140(5):579.
King GL. Th e role of infl ammatory cytokines in diabetes and its complications. J Periodontol. 2008;79:1527-1534.
Ramani G V, Uber PA, Mehra MR. Chronic heart failure: contemporary diagnosis and management. In: Mayo Clinic Proceedings. Vol 85. Elsevier; 2010:180-195.
Kaptoge S, Seshasai SRK, Gao P, et al. Infl ammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J. 2014;35(9):578-589.
Nanduri J, Yuan G, Kumar GK, Semenza GL, Prabhakar NR. Transcriptional responses to intermittent hypoxia. Respir Physiol Neurobiol. 2008;164(1-2):277-281. doi:10.1016/j. resp.2008.07.006.
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447-5454. doi:10.1128/mcb.12.12.5447.
Hu C-J, Wang L-Y, Chodosh LA, Keith B, Simon MC. Diff erential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361-9374.
Kaelin Jr WG, Ratcliff e PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393-402.
Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015;2015.
Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology. 2004;19(4):176-182.
Brune B, Zhou J. Th e role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1α (HIF-1α). Curr Med Chem. 2003;10(10):845-855.
Tanaka H, Yamamoto M, Hashimoto N, et al. Hypoxiaindependent overexpression of hypoxia-inducible factor 1α as an early change in mouse hepatocarcinogenesis. Cancer Res. 2006;66(23):11263-11270.
Nishi K, Oda T, Takabuchi S, et al. LPS induces hypoxia-inducible factor 1 activation in macrophage-diff erentiated cells in a reactive oxygen species–dependent manner. Antioxid Redox Signal. 2008;10(5):983-996.
Carreau A, Hafny-rahbi B El, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter ? Small molecules and hypoxia Imaging of hypoxic areas. 2011;15(6):1239-1253. doi:10.1111/j.1582-4934.2011.01258.x.
Eltzschig HK, Carmeliet P. Hypoxia and infl ammation. N Engl J Med. 2011;364(7):656-665.
Ziello JE, Jovin IS, Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007;80(2):51.
Eltzschig HK. Targeting Hypoxia-induced Infl ammation. Anesthesiology. 2011;114(2):239-242. doi:10.1097/ ALN.0b013e3182070c66.
Cramer T, Yamanishi Y, Clausen BE, et al. HIF-1α is essential for myeloid cell-mediated infl ammation. Cell. 2003;112(5):645-657.
Dweik RA. Nitric oxide, hypoxia, and superoxide: the good, the bad, and the ugly! 2005.
Deng W, Feng X, Li X, Wang D, Sun L. Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol. 2016;303:7-15.
Jiang F, Tang Y-T, Guo L, Jiao X. Th e role of insulin-like growth factor I and hypoxia inducible factor 1α in vascular endothelial growth factor expression in type 2 diabetes. Ann Clin Lab Sci. 2013;43(1):37-44.
Pichu S, Sathiyamoorthy J, Krishnamoorthy E, Umapathy D, Viswanathan V. Impact of the hypoxia inducible factor-1α (HIF- 1α) pro582ser polymorphism and its gene expression on diabetic foot ulcers. Diabetes Res Clin Pract. 2015;109(3):533-540.
Gu HF, Zheng X, Seman NA, et al. Impact of the hypoxiainducible factor-1 α (HIF1A) Pro582Ser polymorphism on diabetes nephropathy. Diabetes Care. 2013;36(2):415-421.
Al-Shukaili AK, Al-Jabri AA. Rheumatoid arthritis, cytokines and hypoxia. Saudi Med J. 2006;27(11):1642-1649.
Li G, Zhang Y, Qian Y, et al. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway. Mol Immunol. 2013;53(3):227-236.
Hu F, Mu R, Zhu J, et al. Hypoxia and hypoxia-inducible factor- 1α provoke toll-like receptor signalling-induced infl ammation in rheumatoid arthritis. Ann Rheum Dis. 2014;73(5):928-936.
Hu F, Liu H, Xu L, et al. Hypoxia‐inducible factor‐1α perpetuates synovial fi broblast interactions with T cells and B cells in rheumatoid arthritis. Eur J Immunol. 2016;46(3):742-751.
Park SY, Lee SW, Kim HY, Lee WS, Hong KW, Kim CD. HMGB1 induces angiogenesis in rheumatoid arthritis via HIF‐1α activation. Eur J Immunol. 2015;45(4):1216-1227.
Ju C, Colgan SP, Eltzschig HK. Hypoxia-inducible factors as molecular targets for liver diseases. J Mol Med. 2016;94(6):613- 627.
Suzuki T, Shinjo S, Arai T, Kanai M, Goda N. Hypoxia and fatty liver. World J Gastroenterol WJG. 2014;20(41):15087.
Aron-Wisnewsky J, Minville C, Tordjman J, et al. Chronic intermittent hypoxia is a major trigger for non-alcoholic fatty liver disease in morbid obese. J Hepatol. 2012;56(1):225-233.
Arias-Loste MT, Fábrega E, López-Hoyos M, Crespo J. Th e crosstalk between hypoxia and innate immunity in the development of obesity-related nonalcoholic fatty liver disease. Biomed Res Int. 2015;2015.
Nath B, Levin I, Csak T, et al. Hepatocyte‐specifi c hypoxiainducible factor‐1α is a determinant of lipid accumulation and liver injury in alcohol‐induced steatosis in mice. Hepatology. 2011;53(5):1526-1537.
Moczydlowska J, Miltyk W, Hermanowicz A, Lebensztejn DM, Palka JA, Debek W. HIF-1 α as a key factor in bile duct ligationinduced liver fi brosis in rats. J Investig Surg. 2017;30(1):41-46.
Copple BL, Kaska S, Wentling C. Hypoxia-inducible factor activation in myeloid cells contributes to the development of liver fi brosis in cholestatic mice. J Pharmacol Exp Th er. 2012;341(2):307-316.
Lolmede K, de Saint Front VD, Galitzky J, Lafontan M, Bouloumie A. Eff ects of hypoxia on the expression of proangiogenic factors in diff erentiated 3T3-F442A adipocytes. Int J Obes. 2003;27(10):1187.
He Q, Gao Z, Yin J, Zhang J, Yun Z, Ye J. Regulation of HIF- 1α activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. Am J Physiol Metab. 2011;300(5):E877-E885.
Lee YS, Kim J, Osborne O, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing infl ammation and insulin resistance in obesity. Cell. 2014;157(6):1339-1352.