2020, Number 2
<< Back Next >>
Revista Cubana de Información en Ciencias de la Salud (ACIMED) 2020; 31 (2)
Preferencias del usuario, categorización de consultas y documentos, tres variables importantes en el cálculo de relevancia
Rodríguez LP, Viltres SH, Febles RJP, Estrada SV
Language: English
References: 17
Page: 1-12
PDF size: 312.27 Kb.
ABSTRACT
The quality of an information retrieval system depends largely on the satisfaction degree of users with the results obtained when executing a query, so it is essential to design processes that store the preferences patterns of each of them and vary the way in which the results are shown taking into account the specific characteristics of each user. The objective of this article was to present an algorithm for calculating the relevance of the documents provided to users, which used the variables: the user's search profile, the category of the documents and the category of the query as parameters, to customize the results provided by the search engine to the users. In addition, it used as impulse factors the degree of predominance of a search category in the user's profile and the categories to which the document belongs. To validate the algorithm, precision and recall metrics were applied to check that the results obtained are relevant to users.
REFERENCES
Marcos MC. Entrevista a Ricardo Baeza-Yates, de Yahoo! Investigation. Hipertext.net. 2008 [acceso: 16/03/2020];6:[aprox. 4 p.]. Disponible en: https://ddd.uab.cat/pub/artpub/2007/88758/hipertext_a2007n5a7/recuperacion-informacion.html
Searchenginejournal.com. Newtown Turnpike. EE. UU: Searchenginejournal.com; 2020 [acceso: 16/03/2020]. Disponible en: https://www.searchenginejournal.com/google-confirms-maccabees-algorithm-update/228901/
Gonzalo C, Codina L, Rovira C. Recuperación de Información centrada en el usuario y SEO: categorización y determinación de las intenciones de búsqueda en la Web. Ind Comunic. 2015;5(3):19-27.
Sust E, Cuevas A, José O. Análisis de tendencias en la personalización de los resultados en buscadores web. RCCI. 2018;12(2):111-28.
Babekr STF, Khaled M. Personalized semantic retrieval and summarization of web based documents. Internat J Adv Comp Sc App. 2013;4(1):177-86.
Bibi T, Dixit P. Web search personalization using machine learning techniques. In: IEEE International Advance Computing Conference (IACC). IEEE; 2014. p. 1296-9.
Bostan S, Ghasemzadeh G. Personalization of Search Engines, Based-on Comparative Analysis of User Behavior. J Advan Computer Res. 2015;6(2):65-72.
Dumais ST. Personalized Search: Potential and Pitfalls. CIKM; 2016. p. 689.
Gao Q, Young I. A multi-agent personalized ontology profile based query refinement approach for information retrieval: control, automation and systems (ICCAS). 13th International Conference on IEEE. p. 2013:543-7.
Ghorab MR. Personalised Information Retrieval: survey and classification. Springer. 2013;23(4):381-443.
Hannak A. Measuring personalization of web search. In: Proceedings of the XXII International Conference on World Wide Web. ACM; 2013. p. 527-38.
Johnson MS. Personalized Recommendation System for Custom Google Search. International Journal of Computer & Mathematical Sciences; 2016:5.
Fransson J. Efficient Information Searching on the Web. A Handbook in the Art of Searching for Information; 2010.
Searchengineland.com. Newtown Turnpike. EE.UU.: Searchengineland.com; c2020 [acceso: 16/03/2020]. 8 major Google algorithm updates, explained [aprox. 15 p.]. Disponible en: https://searchengineland.com/8-major-google-algorithm-updates-explained-282627
Baquerizo R, Leyva P, Febles J, Viltres H, Estrada V. Algorithm for calculating relevance of documents in information retrieval systems. IRJET; 2017 [acceso: 16/03/2020];4(3):[aprox. 13 p.]. Disponible en: https://www.irjet.net/archives/V4/i5/IRJET-V4I501.pdf
Ortega P, Leyva P, Febles JP, Viltres H, Delgado Y. Computational model for the processing of documents and support to the decision making in systems of information retrieval. Internat Res J Engin Technol. IRJET; 2017 [acceso: 16/03/2020];4(5): [aprox. 17 p.]. Disponible en: https://www.irjet.net/archives/V4/i5/IRJET-V4I502.pdf
Viltres H, Rodríguez P, Febles JP, Estrada V. Information retrieval with semantic annotation. Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology; 2019 [acceso: 16/03/2020];[aprox. 10 p.]. Disponible en: http://laccei.org/LACCEI2019MontegoBay/full_papers/FP308.pdf