2020, Number 3
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2020; 36 (3)
Cytogenetics of malignant hemopathies in the sequencing era
Lavaut SK
Language: Spanish
References: 16
Page:
PDF size: 320.93 Kb.
ABSTRACT
Hematological neoplasms are characterized by a large number and great complexity of genetic disorders, from the formation of fusion genes after chromosomal translocations and inversions to gene mutation and epigenetic disorders that have permitted the identification of new oncogenes and tumor-suppressing genes responsible for their etiology. When addressing the genetic study of leukemias, multiple techniques are used, such as conventional cytogenetics, molecular cytogenetics, and fluorescence in situ hybridization (FISH), the latter having the higher degree of sensitivity, specificity and speed, which allow diagnosis, prognostic stratification and follow-up of the disease. The previous techniques are integrated with molecular biology techniques, gene sequencing, among others, which allow discovery of new genetic markers with better characterization of malignant hemopathies and the possibility of developing new specific drugs against the molecular target. The objective was to review the usefulness of cytogenetics and gene sequencing in the study of acute myeloid leukemia and chronic lymphocytic leukemia. Given the advantages, disadvantages and limitations of these genetic techniques, it is necessary to use them in as complementary but never exclusive management ways.
REFERENCES
De Braekeleer E, Douet-Guilbert N, De Braekeleer M. Genetic diagnosis in malignant hemopathies: from cytogenetics to next-generation sequencing. Expert Rev Mol Diagn. 2014;14(2):127-9.
Nowel PC, Hungerford DA. Chromosome studies on normal and leukemic leucocytes. J Natl Cancer Inst. 1960;25:85-109.
Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243:290-3.
Jehan Z, Uddin S, Al-Kuraya KS. In-Situ Hybridization as a Molecular Tool in Cancer Diagnosis and Treatment. Curr Med Chem. 2012;19:3730-8.
Mordoh A. Secuenciación masiva de ADN: la próxima generación. Dermatol Arg. 2019;25(1):2-8.
Arber DA, Orazi A, Hasserjian R, Thiele J,Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-406. doi:10.1182/blood-2016-03-643544.
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchener T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424-47.
Weinberg OK, Sohani AR, Bhargava P, Nardi V. Diagnostic Work-up of Acute Myeloid Leukemia. Am J Hematol. 2017;92(3):317-21.
Paschka P, Marcucci G, Ruppert AS, Mrózek K, Chen H, Kittles RA, et al. Adverse prognostic significance of KIT mutations inadult acute myeloid leukemia with inv(16) and t(8;21): A Cancer and Leukemia Group B study. J Clin Oncol. 2006;24:3904-11. doi:10.1200/JCO.2006.06.9500
Shin SY, Lee ST, Kim HJ, Cho EH, Kim JW, Park S, et al. Mutation profiling of 19 candidate genes in acutemyeloid leukemia suggests significance of DNMT3A mutations. Oncotarget. 2016;7(34):54825-37.doi: 10.18632/oncotarget.10240
Northrup V, Maybank A,Carson N, Rahmeh T.The Value of Next-Generation Sequencing in the Screening and Evaluation of Hematologic Neoplasms in Clinical Practice.Am J Clin Pathol. 2020; 153(5):639-45. doi: 10.1093/ajcp/aqz203.
Kuo FC, Steensma DP, Dal Cin P. Conventional Cytogenetics for Myeloid Neoplasms in the Era of Next-Generation-Sequencing. Am J Hematol. 2017;92(3):227-9.
Herling CD, Klaumünzer M, Rocha CK, Altmüller J, Thiele H, Bahlo J, et al. Complex karyotypes and KRA Sand POT1 mutations impact outcome in CLL after chlorambucilbased chemotherapy or chemoimmunotherapy. Blood. 2016;128(3):395-404. doi: 10.1182/blood-2016-01-691550
Dubuc AM, DavidsMS, Pulluqi M, Pulluqi O, Hoang K, Hernandez-Sánchez JM, et al. FISH in the dark: How the combination of FISH and conventional karyotyping improves the diagnostic yield in CpG-stimulated Chronic Lymphocytic Leukemia (CLL). Am J Hematol. 2016;91(10):978-83. doi: 10.1002/ajh.24452.
Abruzzo LV. Synergy: karyotypes and mutations in CLL. Blood 2016;128(3):319-20.
Ramsay AJ, Quesada V, Foronda M, Conde L, Martínez-Trillo A, Villamour N, et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat Genet. 2013;45(5):526-30. doi: org/10.1038/ng.2584.