2018, Número 4
Siguiente >>
Biotecnol Apl 2018; 35 (4)
Péptidos antimicrobianos naturales
Vázquez A, Perdomo-Morales R, Montero-Alejo V
Idioma: Ingles.
Referencias bibliográficas: 71
Paginas: 4101-4107
Archivo PDF: 508.40 Kb.
RESUMEN
La reciente aparición de un creciente número de bacterias resistentes a los antibióticos convencionales se ha convertido en un problema serio para el sistema de salud mundial. Para superar esta resistencia es apremiante el desarrollo de antibióticos con nuevos mecanismos de acción. Los péptidos antimicrobianos son candidatos exitosos como nuevos agentes antimicrobianos debido a su amplio espectro de acción, alta selectividad citotóxica y su dificultad para que las bacterias desarrollen resistencia a éstos. Con esta revisión actualizada de la materia pretendemos mostrar conceptos básicos que deben ser dominados en los estudios que se realicen en el descubrimiento de nuevas moléculas de naturaleza peptídica con actividad antimicrobiana. Los péptidos antimicrobianos desempeñan una función primordial en la defensa contra patógenos bacterianos, teniendo un peso mucho mayor en aquellas especies que carecen de inmunidad adaptativa. Su función como moléculas claves de la inmunidad innata justifica su potencialidad como agentes terapéuticos antiinfecciosos. Un requisito esencial para cualquier agente de defensa del organismo o agente terapéutico es la toxicidad selectiva sobre objetivos microbianos más que sobre el hospedero, que impliquen un riesgo mínimo para este último. Sin embargo, la resistencia de los microorganismos a este tipo de compuestos debe ser cuidadosamente analizada. La búsqueda de nuevas alternativas debe estar respaldada por el conocimiento previo de los mecanismos de acción de estas biomoléculas así como los factores estructurales que determinan su efectividad. La literatura actualizada que se refiere en el artículo muestra las principales características funcionales de los péptidos antimicrobianos que determinan su actividad, profundizando además en el mecanismo de acción de los mismos. Se exponen conocimientos básicos y consideraciones sobre estas moléculas a tener en cuenta por los investigadores en el campo.
REFERENCIAS (EN ESTE ARTÍCULO)
Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004;198:169-84.
Mattick AT, Hirsch A. Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet. 1947;2(6462):5-8.
Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-infect Therapy. 2007;5(6):951-9.
Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci. 2017;11:73.
Phoenix DA, Dennison SR, Harris F. Cationic Antimicrobial Peptides. In: Phoenix DA, Dennison SR, Harris F. Antimicrobial Peptides. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2013. p. 39-81.
Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491-511.
Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238-50.
Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides. Proc Nat Acad Sci U S A. 2004;101(19):7363-8.
Yount NY, Bayer AS, Xiong YQ, Yeaman MR. Advances in antimicrobial peptide immunobiology. Biopolymers. 2006;84(5):435-58.
Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-infective Ther. 2007;5(6):951-9.
Zhao J, Zhao C, Liang G, Zhang M, Zheng J. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities. J Chem Inf Model. 2013;53(12):3280-96.
Yin LM, Edwards MA, Li J, Yip CM, Deber CM. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem. 2012;287(10):7738-45.
Mohanram H, Bhattacharjya S. Saltresistant short antimicrobial peptides. Biopolymers. 2016;106(3):345-56.
Huang Y, Huang J, Chen Y. Alphahelical cationic antimicrobial peptides: relationships of structure and function. Protein Cell. 2010;1(2):143-52.
Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710-20.
Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides. Proc Nat Acad Sci U S A. 2004;101(19):7363-8.
Dias Rde O, Franco OL. Cysteinestabilized alphabeta defensins: From a common fold to antibacterial activity. Peptides. 2015;72:64-72.
Haney EF, Hancock RE. Peptide design for antimicrobial and immunomodulatory applications. Biopolymers. 2013;100(6):572-83.
Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci. 2009;10(6):585-606.
Jarczak J, Kosciuczuk EM, Lisowski P, Strzalkowska N, Jozwik A, Horbanczuk J, et al. Defensins: natural component of human innate immunity. Hum Immunol. 2013;74(9):1069-79.
Sinha M, Kaushik S, Kaur P, Sharma S, Singh TP. Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Int J Pept. 2013;2013:390230.
Nagarajan K, Marimuthu SK, Palanisamy S, Subbiah L. Peptide therapeutics versus Superbugs: Highlight on current research and advancements. Int J Pept Res Ther. 2018;24(1):19-33.
Chen W, Luo L. Classification of antimicrobial peptide using diversity measure with quadratic discriminant analysis. J Microbiol Methods. 2009;78(1):94-6.
Rosenfeld Y, Shai Y. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta. 2006;1758(9):1513-22.
Deshayes S, Plenat T, Aldrian-Herrada G, Divita G, Le Grimellec C, Heitz F. Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes. Biochemistry. 2004;43(24):7698-706.
Eisenberg D, Weiss RM, Terwilliger TC. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Nat Acad Sci U S A. 1984;81(1):140-4.
Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27-55.
Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta. 2006;1758(9):1184-202.
Sitaram N. Antimicrobial peptides with unusual amino acid compositions and unusual structures. Curr Med Chem. 2006;13(6):679-96.
Takahashi D, Shukla SK, Prakash O, Zhang G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie. 2010;92(9):1236-41.
Deleu M, Crowet JM, Nasir MN, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. Biochim Biophys Acta. 2014;1838(12):3171-90.
Glukhov E, Stark M, Burrows LL, Deber CM. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J Biol Chem. 2005;280(40):33960-7.
Gagnon MC, Strandberg E, Grau- Campistany A, Wadhwani P, Reichert J, Burck J, et al. Influence of the Length and Charge on the Activity of alpha-Helical Amphipathic Antimicrobial Peptides. Biochemistry. 2017;56(11):1680-95.
Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett. 2001;501(2-3):146-50.
Mangoni ML, Shai Y. Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification. Biochim Biophys Acta. 2009;1788(8):1610-9.
Marsh D. Orientation and peptide-lipid interactions of alamethicin incorporated in phospholipid membranes: polarized infrared and spin-label EPR spectroscopy. Biochemistry. 2009;48(4):729-37.
Zelezetsky I, Pag U, Sahl HG, Tossi A. Tuning the biological properties of amphipathic alpha-helical antimicrobial peptides: rational use of minimal amino acid substitutions. Peptides. 2005;26(12):2368-76.
Jiang Z, Kullberg BJ, van der Lee H, Vasil AI, Hale JD, Mant CT, et al. Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides. Chem Biol Drug Design. 2008;72(6):483-95.
Cheng JT, Hale JD, Elliot M, Hancock RE, Straus SK. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J. 2009;96(2):552-65.
Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic alphahelix- lipid interactions: a model peptide study. Biophys J. 2000;79(4):2075-83.
Galanth C, Abbassi F, Lequin O, Ayala- Sanmartin J, Ladram A, Nicolas P, et al. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hingehelix structure and membrane curvature strain. Biochemistry. 2009;48(2):313-27.
Kim C, Spano J, Park EK, Wi S. Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin- 2 and aurein-3.3. Biochim Biophys Acta. 2009;1788(7):1482-96.
Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol. 2006;4(7):529-36.
Lee J, Lee DG. Antimicrobial Peptides (AMPs) with Dual Mechanisms: Membrane Disruption and Apoptosis. J Microbiol Biotechnol. 2015;25(6):759-64.
Pieta P, Mirza J, Lipkowski J. Direct visualization of the alamethicin pore formed in a planar phospholipid matrix. Proc Nat Acad Sci U S A. 2012;109(52):21223-7.
Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J. 2001;81(3):1475-85.
Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29(9):464-72.
Sengupta D, Leontiadou H, Mark AE, Marrink SJ. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta. 2008;1778(10): 2308-17.
Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996;35(35):11361-8.
Roversi D, Luca V, Aureli S, Park Y, Mangoni ML, Stella L. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chem Biol. 2014;9(9):2003-7.
Hancock RE, Patrzykat A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Dis. 2002;2(1):79-83.
Uyterhoeven ET, Butler CH, Ko D, Elmore DE. Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II. FEBS Lett. 2008;582(12):1715-8.
Bandyopadhyay S, Lee M, Sivaraman J, Chatterjee C. Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom. Biochem Biophys Res Commu. 2013;430(1):1-6.
Guilhelmelli F, Vilela N, Albuquerque P, Derengowski Lda S, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353.
Rebuffat S. Microcins in action: amazing defence strategies of Enterobacteria. Biochem Soc Transact. 2012;40(6):1456-62.
Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperoneassisted protein folding. Biochemistry. 2001;40(10):3016-26.
Otvos L, Insug O, Rogers ME, Consolvo PJ, Condie BA, Lovas S, et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry. 2000;39(46):14150-9.
Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, et al. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science. 2006;313(5793):1636-7.
Omardien S, Brul S, Zaat SA. Antimicrobial activity of cationic antimicrobial peptides against Gram-positives: Current progress made in understanding the mode of action and the response of bacteria. Front Cell Dev Biol. 2016;4:111.
Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new antiinfective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551-7.
Falanga A, Galdiero S. Emerging therapeutic agents on the basis of naturally occurring antimicrobial peptides. In: Ryadnov M, Hudecz F, editors. Amino Acids, Peptides and Proteins. Vol. 42. London: RSC Publishing; 2018. p. 190-227.
Gennaro R, Zanetti M. Structural features and biological activities of the cathelicidinderived antimicrobial peptides. Biopolymers. 2000;55(1):31-49.
Brogden KA, Ackermann M, McCray PB, Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrobial Agents. 2003;22(5):465-78.
Powers JP, Hancock RE. The relationship between peptide structure and antibacterial activity. Peptides. 2003;24(11):1681-91.
Marr AK, Gooderham WJ, Hancock RE. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Current Opin Pharmacol. 2006;6(5):468-72.
Baddiley J. Teichoic acids in bacterial coaggregation. Microbiology. 2000;146 ( Pt 6):1257-8.
Bishop RE, Gibbons HS, Guina T, Trent MS, Miller SI, Raetz CR. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J. 2000;19(19):5071-80.
Anaya-Lopez JL, Lopez-Meza JE, Ochoa- Zarzosa A. Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol. 2013;39(2):180-95.
Band VI, Weiss DS. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria. Antibiotics. 2015;4(1):18-41.
Maria-Neto S, de Almeida KC, Macedo ML, Franco OL. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim Biophys Acta. 2015;1848(11 Pt B):3078-88.
Tzeng YL, Stephens DS. Antimicrobial peptide resistance in Neisseria meningitidis. Biochim Biophys Acta. 2015;1848(11 Pt B):3026-31.